Remarks on pseudo-differential operators*

By Hitoshi KUMANO-GO

(Received Dec. 27, 1968)

§ 0. Introduction.

In a recent paper [2] Hörmander defined pseudo-differential operators through a function class $S_{\rho,\delta}^m(\Omega)$, $0 \le \delta$, $0 < \rho$, for an open set Ω in R^n . We say $p(x;\xi) \in S_{\rho,\delta}^m(\Omega)$, when $p(x;\xi)$ belongs to $C^{\infty}(R^n \times R^n)$ and, for every compact set $K \subset \Omega$ and all α , β , there exist constants $C_{\alpha,\beta,K}$ such that

$$|\partial_x^{\alpha}\partial_{\xi}^{\beta}p(x;\xi)| \leq C_{\alpha,\beta,K}(1+|\xi|)^{m+\delta|\alpha|-\rho|\beta|}$$
, $x \in K$, $\xi \in R^n$,

where $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$ are multi-indices whose elements are non-negative integers and

$$\partial_{x_j} = \frac{\partial}{\partial x_j}$$
, $\partial_{\xi_j} = \frac{\partial}{\partial \xi_j}$, $\partial_x^{\alpha} = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n}$, $\partial_{\xi}^{\beta} = \partial_{\xi_1}^{\beta_1} \cdots \partial_{\xi_n}^{\beta_n}$, $|\alpha| = \alpha_1 + \cdots + \alpha_n$, $|\beta| = \beta_1 + \cdots + \beta_n$.

In the present paper we shall study the H_s theory of pseudo-differential operators for the special case: $0 \le \delta < \rho \le 1$, $\Omega = R^n$ and $C_{\alpha,\beta,K} = C_{\alpha,\beta}$ (independent of K). In this case Hörmander [2] proved an inequality of the form

$$\|p(X; D_x)u\|_0 \leq C_p \|u\|_0$$
,

when m=0, and Lax-Nirenberg [7] proved a sharp form of Gårding's inequality:

$$\mathcal{R}_e\left(\boldsymbol{p}(X; D_x)\boldsymbol{u}, \boldsymbol{u}\right) \geq -K\|\boldsymbol{u}\|_0^2$$

when m=1, $\rho=1$ and $\delta=0$. But we must remark here that it is complicated to derive the corresponding inequalities when m is an arbitrary real number and the $\|\cdot\|_0$ norm is replaced by the $\|\cdot\|_s$ norm for real s. In the present note the space \mathcal{B} , i. e., the set of C^{∞} functions in R^n (or $R^n \times R^n$) whose derivatives are all bounded, plays an important role.

In Section 1 we define the operator class $S_{\rho,\delta}^m$, $0 \le \delta < \rho \le 1$, and, through it, the class $\mathcal{L}_{\rho,\delta}^m$ of pseudo-differential operators. The main theorems, which

^{*} This paper represents results obtained at the Courant Institute of Mathematical Sciences, New York University, supported by the National Science Foundation, Grant NSF-GP-8114, and the Ford Foundation.