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The purpose of this paper is to extend some of the results in the theory
of semi-groups of operators in Banach spaces to the case of locally convex
topological vector spaces.

We consider a vector space ac with two locally convex topologies $\tau$ and $\sigma$

which satisfy the conditions: $(T1)\tau$ is stronger than $\sigma;(T2)\tau$ has a base
of neighborhoods of $0$ composed of convex, circled and $\sigma$ -closed sets; $(T3)\mathfrak{X}_{\tau}$

is sequentially complete; $(T4)$ every continuous function $f(t)$ from $[0,1]$ to $\mathfrak{X}_{\sigma}$

is Riemann integrable in $\sigma$ . We shall call a family of linear operators $\{T_{t}\}_{f\geqq 0}$

in $\mathfrak{X}$ a $(\tau, \sigma)$ semi-group if it satisfies the conditions: $(S1)T_{0}=I$ (identity);
$(S2)T_{t+s}=T_{t}T_{s}$ ; $(S3)\{T_{\iota}\}$ is equicontinuous in $\mathfrak{L}(\mathfrak{X}_{\tau}, \mathfrak{X}_{\tau});(S4)T_{t}$ is, for every
$t$ , a $\sigma$ -sequentially closed operator; $(S5)T_{t}x$ is a $\sigma$ -continuous function for
every $x$ .

The well-known Hille-Yosida theory deals with the case $\tau=\sigma$ and when
$\mathfrak{X}_{\tau}$ is a Banach space. The results have been generalized by Schwartz [8]

when $X_{\tau}$ is a quasi-complete locally convex space. The theory in the case
when $\mathfrak{X}$ is an adjoint space of a Banach space, $\tau$ is the strong topology and $\sigma$

is the weak’ topology is known as the theory of adjoint semi-groups by Feller
[2] and Phillips [7].

In \S 1 we give several sufficient conditions to assure the above assumptions.
Especially it is shown that if $ce_{\tau}$ is quasi-complete and if $\{T_{t}\}$ satisfies $(S1)-$

$(S3)$ and the condition that $T_{t}x$ converges weakly to $x$ as $t\rightarrow 0$ for every $x$,

then $\{T_{t}\}$ is a $(\tau, \tau)$ semi-group. \S 2 is of preliminary nature.
The infinitesimal generators. $A_{\tau}$ and $A_{\sigma}$ are defined as usual by

$A_{\tau}x=\tau-\lim_{t\rightarrow 0}\div(T_{t}-I)x$ and $A_{\sigma}x=\sigma-\lim_{t\rightarrow 0}\div(T_{t}-I)x$ .

Thanks to the above assumptions, we can show that the Laplace transform

$R(\lambda)x=\int_{0^{\infty}}e^{-\lambda t}T_{t}xdt$ , ${\rm Re}\lambda>0$

is convergent as an improper $\sigma$ -Riemann integral. $\{(\lambda R(\lambda))^{m}\}$ is equicontinuous
in $\mathfrak{L}(\mathfrak{X}_{\tau}, X_{r})$ with $\{T_{t}\}$ and $R(\lambda)$ is the resolvent of a $\tau$ -closed linear operator
$A$ , which we call the generator of $\{T_{t}\}$ . We are mainly concerned in \S 3


