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In his former paper [2], the author formalized a system of axioms for
the theory of ordinal numbers, which will be denoted by $\Gamma_{0}$ in this paper.
He proved in [2] that the consistency of the set theory follows from that
of $\Gamma_{0}$ . In this paper the proof for its converse is given, namely we shall
show that $\Gamma_{0}$ is consistent, if the set theory is consistent.

For this purpose we shall give three formalizations $\Gamma_{1},$ $\Gamma_{2}$ and $\Gamma_{3}$ of
set theory. Among them $\Gamma_{1}$ is the ‘ weakest ’ and the $\Gamma_{3}$ the ‘ strongest’
one, and Godel’s axiom system $A,$ $B,$ $C,$ $D$ and $E$ lies between $\Gamma_{1}$ and $\Gamma_{2}$ .

More precisely, the system $\Gamma_{1}$ is the system obtained from Godel’s axiom
system $A,$ $B,$ $C,$ $D$ and $E$ by replacing any class variable by a well formed
formula of Gentzen’s $LK$ (cf. [6]). The system $\Gamma_{2}$ is obtained again from
Godel’s system by replacing any class variable by a variable for formulas.
However, in $\Gamma_{2}$ we use the logic $HLC[3]$ , which means the predicate logic
of the second order and the first level. The system $\Gamma_{3}$ is so constructed
that it contains enough axioms for our purpose to reduce $\Gamma_{0}$ to $\Gamma_{3}$ . In $\Gamma_{3}$

we use the logic $FLC[2]$ , which means the logic without variables for
formulas but with bound variables for functions of any order.

We first prove the consistency of $\Gamma_{2}$ under the assumption of the con-
sistency of $\Gamma_{1}$ (\S 2 of Chapter I). Then we show that $\Gamma_{3}$ is consistent, if
$\Gamma_{2}$ is consistent (\S 3 of Chapter I). Finally, by using the restriction theory
in the author’s paper [41, we construct a model for $\Gamma_{0}$ in the set theory
$\Gamma_{3}$ (\S 2 of Chapter II). Consequently the consistency of the ordinal number
theory $\Gamma_{0}$ is proved, provided that the set theory $\Gamma_{1}$ is consistent (\S 2 of
Chapter II).

Chapter I. Three formalizations of set theory.

\S 1. The first formalization.

We give the first formalization of set theory by the following axioms
$\Gamma_{1}$ in $LK$.
1.1. $\forall x\forall y(\forall z(z\in x\leftarrow|z\in y) x=y)$

1.2. $\forall x\forall y\forall z(z\in\{x,y\}\leftarrow|x=zy=z)$

1.3. $\forall x\forall y(y\in U(x)\leftarrow|\exists z(y\in z\wedge z\in\lambda))$


