Journal of the Mathematical Society of Japan

Vol. 5, Nos. 3~4, November, 1953.

Generalized evolute in Klein spaces.

Minoru Kurita

(Received Feb. 11, 1953)

We investigate in this paper the generalization of the enveloping theorem of an evolute of a curve on the euclidean plane to the case of figures in Klein spaces by the method of moving frame of E. Cartan [1]. The idea of this paper is the same with that of [3]. In addition we state the process of obtaining theorems in Klein spaces analogous to Euler-Savary's theorem on the euclidean plane ([2] pp. 28-29).

1. Generalized evolute

Let (5) be a fundamental Lie group of the Klein space and 1.1 \mathfrak{H} a closed subgroup of \mathfrak{G} . We consider the figure F consisting of one-parametric set of points of the homogeneous space $\mathfrak{G}/\mathfrak{H}$ and attach to each element of F a Frenet's frame defined in [1] pp. 131–132. Let the Frenet's frame defined at the point A on F be S_aR , where R is a fundamental frame and S_a is an element of \mathfrak{G} , and let the Frenet's frame at a consecutive point of F be $S_{a+da}R$. The frames whose relative displacements are each given by S_t with respect to $S_a R$ and $S_{a+da} R$ are $S_a S_t R$ and $S_{a+da} S_t R$. The infinitesimal relative displacement between $S_a S_t R$ and $S_{a+da} S_t R$ is given by $(S_a S_t)^{-1} (S_{a+da} S_t) = S_t^{-1} (S_a^{-1} S_{a+da}) S_t$. We take S_t which depends on the parameter *a*, so that $S_t^{-1}(S_a^{-1}S_{a+da})S_t$ is an infinitesimal element of a certain fixed subgroup \Re of \Im for all a. \Re is not in general unique. We call the elements of the homogeneous space \Im/\Re belonging to $S_a S_t R$ a central figure. To each point of F a central figure is defined and we call a set of central figures an evolute of F, which we denote by E. The infinitesimal relative displacement of the frames $S_a S_t R$ attached to E can be given by

 $(S_a S_t)^{-1} (S_{a+da} S_{t+dt}) = S_t^{-1} (S_a^{-1} S_{a+da}) S_t \cdot S_t^{-1} S_{t+dt}.$

Let the relative components of the relative displacement of S_aS_t , S_a , S_t be $\omega_p, \omega_p^{(1)}, \omega_p^{(0)}$ ($p=1, 2, \dots, r$) respectively. Then we have the relations