Generalized evolute in Klein spaces.

Minoru Kurita.

(Received Feb. 11, 1953)
We investigate in this paper the generalization of the enveloping theorem of an evolute of a curve on the euclidean plane to the case of figures in Klein spaces by the method of moving frame of E. Cartan [1]. The idea of this paper is the same with that of [3]. In addition we state the process of obtaining theorems in Klein spaces analogous to Euler-Savary's theorem on the euclidean plane ([2] pp. 28-29).

1. Generalized evolute

1.1 Let (5) be a fundamental Lie group of the Klein space and \mathfrak{S} a closed subgroup of \mathscr{G}. We consider the figure F consisting of one-parametric set of points of the homogeneous space $0 / 5 / 5$ and attach to each element of F a Frenet's frame defined in [.1] pp. 131-132. Let the Frenet's frame defined at the point A on F be $S_{a} R$, where R is a fundamental frame and S_{a} is an element of \mathfrak{G}, and let the Frenet's frame at a consecutive point of F be $S_{a+d a} R$. The frames whose relative displacements are each given by S_{t} with respect to $S_{a} R$ and $S_{a+d a} R$ are $S_{a} S_{t} R$ and $S_{a+d a} S_{t} R$. The infinitesimal relative displacement between $S_{a} S_{t} R$ and $S_{a+d a} S_{t} R$ is given by $\left(S_{a} S_{t}\right)^{-1}\left(S_{a+d a} S_{t}\right)=S_{t}^{-1}\left(S_{a}^{-1} S_{a+d a}\right) S_{t}$. We take S_{t} which depends on the parameter a, so that $S_{t}^{-1}\left(S_{a}^{-1} S_{a+d a}\right) S_{t}$ is an infinitesimal element of a certain fixed subgroup Ω of \mathfrak{C} for all a. Ω is not in general unique. We call the elements of the homogeneous space \mathscr{B} / Ω belonging to $S_{a} S_{t} R$ a central figure. To each point of F a central figure is defined and we call a set of central figures an evolute of F, which we denote by E. The infinitesimal relative displacement of the frames $S_{a} S_{t} R$ attached to E can be given by

$$
\left(S_{a} S_{t}\right)^{-1}\left(S_{a+d a} S_{t+d t}\right)=S_{t}^{-1}\left(S_{a}^{-1} S_{a+d a}\right) S_{t} \cdot S_{t}^{-1} S_{t+d t} .
$$

Let the relative components of the relative displacement of $S_{a} S_{t}, S_{a}, S_{t}$ be $\omega_{p}, \omega_{\rho}^{(1)}, \omega_{\rho}^{(0)}(p=1,2, \cdots, r)$ respectively. Then we have the relations

