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Generalized evolute in Klein spaces.
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We investigate in this paper the generalization of the enveloping
theorem of an evolute of a curve on the euclidean plane to the case of
figures in Klein spaces by the method of moving frame of E. Cartan
[1]. The idea of this paper is the same with that of [3]. In addition
we state the process of obtaining theorems in Klein spaces analogous
to Euler-Savary’s theorem on the euclidean plane ([2] pp. 28-29).

1. Generalized evolute
1.1 Let $\mathfrak{G}$ be a fundamental Lie group of the Klein space and

$\mathfrak{H}$ a closed subgroup of G. We consider the figure $F$
’ consisting of

one-parametric set of points of the homogeneous space $\mathfrak{G}/\mathfrak{H}$ and attach
to each element of $F$ a Frenet’s frame defined in [1] pp. 131-132. Let
the Frenet’s frame defined at the point $A$ on $F$ be $S_{a}R$ , where $R$ is
a fundamental frame and $S_{a}$ is an element of $\mathfrak{G}$ , and let the Frenet’s
frame at a consecutive point of $F$ be $S_{a+da}R$. The frames whose relative
displacements are each given by $S_{t}$ with respect to $S_{a}R$ and $S_{a+da}R$ are
$S_{a}S_{t}R$ and $S_{a+da}S_{t}R$. The infinitesimal relative displacement between
$S_{a}S_{t}R$ and $S_{a+da}S_{t}R$ is given by $(S_{a}S_{t})^{-1}(S_{a+da}S_{t})=S_{t^{-1}}(S_{a}^{-1}S_{a+da})S_{t}$ . We
take $S_{t}$ which depends on the parameter $a$, so that $S_{t^{-1}}(S_{a}^{-1}S_{a+da})S_{t}$ is
an infinitesimal element of a certain fixed subgroup $\mathfrak{K}$ of $\mathfrak{G}$ for all $a$.
$\mathfrak{K}$ is not in general unique. We call the elements of the homogeneous
space $\mathfrak{G}/\mathfrak{K}$ belonging to $S_{a}S_{t}R$ a central figure. To each point of $F$ a
central figure is defined and we call a set of central figures an evolute
of $F$, which we denote by $E$. The infinitesimal relative displacement
of the frames $S_{a}S_{t}R$ attached to $E$ can be given by

$(S_{a}S_{l})^{-1}(S_{a+da}S_{t+dt})=S_{l^{-1}}(S_{a}^{-1}S_{a+da})S_{t}\cdot S_{t}^{-1}S_{t+dt}$ .
Let the relative components of the relative displacement of $S_{a}S_{t},$ $S_{a},$ $S_{t}$

be $\omega_{p},$
$\omega_{p}^{(1)},$ $\omega_{p^{0)}}^{(}(p=1,2,\cdots, r)$ respectively. Then we have the relations


