## Weak L-spaces are free L-spaces

By Munehiko ITŌ

(Received Sept. 6, 1980) (Revised Jan. 23, 1981)

## 1. Introduction.

In order to discuss the dimension theory, K. Nagami [4], [5] introduced the concepts of free L-spaces and weak L-spaces. He posed the following two problems in [5] and [4] respectively.

- 1. Does the class of weak L-spaces coincide with the class of free L-spaces?
- 2. Is the perfect image of a free L-space again a free L-space? (Problem 2.11.)

The main purpose of this paper gives a positive answer to the first problem. In Section 4 we give a partial answer to the second problem as follows.

The closed continuous image of a free L-space need not be a free L-space.

In this paper all spaces are assumed to be Hausdorff topological spaces. The letter N denotes the positive integers. For undefined terminology refer to [2].

The author thanks Professor K. Nagami for his guidance.

## 2. Definition.

DEFINITION 2-1. Let X be a space and F a closed subset of X. A family  $\mathcal{U}$  of open sets is said to be an anti-cover of F if  $\mathcal{U}^*(=\bigcup\{U:U\in\mathcal{U}\})=X-F$ .

Let  $\mathcal U$  be an anti-cover of F. For a subset S of X  $\operatorname{St}^i_{\mathcal U}(S)$  is defined inductively by the formulae

$$\operatorname{St}_{\mathcal{U}}^{\mathbf{1}}(S) = \operatorname{St}_{\mathcal{U}}(S) = \{ U \in \mathcal{U} : U \cap S \neq \emptyset \} *,$$
  
$$\operatorname{St}_{\mathcal{U}}^{\mathbf{1}}(S) = \operatorname{St}_{\mathcal{U}}(\operatorname{St}_{\mathcal{U}}^{\mathbf{1}-\mathbf{1}}(S)) .$$

An open neighborhood W of F is said to be a canonical (semi-canonical) neighborhood of F with respect to U if  $F \cap Cl \operatorname{St}_U^{\bullet}(X-W) = \emptyset$  for each  $i \in N$   $(F \cap Cl \operatorname{St}_U(X-W) = \emptyset)$  respectively.

Let  $\mathcal{W} = \{W_a : a \in A\}$  be a family of neighborhoods of F.  $\mathcal{W}$  is said to be an anti-closure-preserving family if  $\{(X - W_a) \cup F : a \in A\}$  is closure-preserving.

DEFINITION 2-2. For a space X consider a pair  $\mathcal{Q}=(\mathcal{F}, \{U_F: F \in \mathcal{F}\})$  such that  $\mathcal{F}$  is a family of closed sets of X and each  $U_F$  is an anti-cover of F.  $\mathcal{Q}$