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The purpose of the present note is to prove an asymptotic expansion
theorem for a certain kind of oscillatory integrals. Our theorem is a generali-
zation of Theorem 3. 2. 4 of Hormander [1] in the sense that we allow the
phase function to contain certain inhomogeneous terms. Our motivation which
leads us to considering such a kind of generalization lies in long-range scatter-
ing (cf. [3], [4]) as against H\"ormander’s purpose in [1] was to consider
Fourier integral operators. Using our main result, we can give a proof of
Theorem 3. 1 of [4] which played a crucial role in the proof of the complete-
ness of the modified wave operator for long-range scattering. We should note
that H\"ormander’s Theorem 3. 2. 4 also can be used to prove the completeness
when long-range potential $V$ satisfies $V(x)=O(|x|^{-1/2-\epsilon}),$ $\epsilon>0$, but for $V$ which
has longer range, we must use our generalized theorem proved in this paper.

The crucial tool we shall use is the method of stationary phase (see $e$ . $g$ .
Hormander [1] and [2]). Moreover, a method similar to H\"ormander’s proof
of Theorem 3. 2. 4 will be used to estimate the integral on the region bounded
away from the critical point of the phase function.

We shall first summarize our main result in \S 1 and then prove it in \S 2.

\S 1. Main result.

We shall consider the distribution $A_{\omega,\epsilon}$ defined by

(1. 1) $\langle A_{\omega\cdot\epsilon}, u\rangle$

$=\int_{R^{n}}\int_{R^{N}}e^{i(\varphi^{(\omega};x,\theta)-X(x,\theta))}a(x, \theta)u(x)\chi(\epsilon\theta)d\theta dx$ ,

$\epsilon\neq 0$, $u\in C_{0}^{\infty}(R^{n})$ ,

where $\omega$ is a parameter; functions $\varphi,$
$X,$ $a$ are $C^{\infty}$ ; and $\chi$ is a rapidly decreas-

ing function on $R^{N}$ with $\chi(0)=1$ . The precise conditions imposed on those
functions will be given below. Under those conditions, we shall prove the


