# ON THE LAW OF THE ITERATED LOGARITHM FOR LACUNARY TRIGONOMETRIC SERIES II 

Shigeru Takahashi

(Received June 24, 1974)

1. Introduction. In this note we set

$$
S_{N}(t)=\sum_{1}^{N} a_{m} \cos 2 \pi n_{m}\left(t+\alpha_{m}\right) \text { and } A_{N}=\left(2^{-1} \sum_{1}^{N} a_{m}^{2}\right)^{1 / 2},
$$

where $\alpha_{m} \geqq 0$ and $\left\{n_{m}\right\}$ is a sequence of positive integers satisfying the gap condition

$$
\begin{equation*}
n_{m+1} / n_{m} \geqq 1+c m^{-\alpha}, \text { for some } c>0 \text { and } 0 \leqq \alpha \leqq 1 / 2 \tag{1.1}
\end{equation*}
$$

For $\alpha=0, \mathrm{M}$. Weiss [5] proved that if

$$
A_{N} \rightarrow+\infty \text { and } a_{N}=o\left(A_{N}\left(\log \log A_{N}\right)^{-1 / 2}\right), \text { as } N \rightarrow+\infty,
$$

then for any sequence of $\left\{\alpha_{m}\right\}$

$$
\varlimsup_{N}\left(2 A_{N}^{2} \log \log A_{N}\right)^{-1 / 2} S_{N}(t)=1, \quad \text { a.e. . }
$$

For $\alpha>0$, we proved the following
Theorem A [4]. If

$$
A_{N} \rightarrow+\infty \text { and } a_{N}=O\left(A_{N} N^{-\alpha}\left(\log A_{N}\right)^{-(1+\varepsilon) / 2}\right), \text { as } N \rightarrow+\infty
$$

where $\varepsilon$ is a positive number, then we have

$$
\varlimsup_{N}\left(2 A_{N}^{2} \log \log A_{N}\right)^{-1 / 2} S_{N}(t) \leqq 1, \quad \text { a.e. }
$$

The purpose of the present note is to prove the
Theorem B. Suppose

$$
\begin{equation*}
A_{N} \rightarrow+\infty \text { and } a_{N}=O\left(A_{N} N^{-\alpha} \omega_{N}^{-1}\right) \text {, as } N \rightarrow+\infty, \tag{1.2}
\end{equation*}
$$

where $\omega_{N}=(\log N)^{\beta}\left(\log A_{N}\right)^{4}+\left(\log A_{N}\right)^{8}$ and $\beta>1 / 2$, then we have

$$
\varlimsup_{N}\left(2 A_{N}^{2} \log \log A_{N}\right)^{-1 / 2} S_{N}(t) \geqq 1, \quad \text { a.e. }
$$

If $\alpha<1 / 2$ and $\left\{a_{m}\right\}$ is non-increasing, then by Theorem A and B we obtain

