ON COVERING SURFACES OF A CLOSED RIEMANN SURFACE OF GENUS $p \ge 2$

MASATSUGU TSUJI

(Received August 21, 1953)

1. Let F be a closed Riemann surface of genus $p \ge 2$ spread over the z-plane. We cut F along p disjoint ring cuts C_i $(i = 1, 2, \dots, p)$ and let F_0 be the resulting surface. We take infinitely many same samples as F_0 and connect them along the opposite shores of C_i as in the well known way, then we obtain a covering surface F^{∞} of F, which is of planar character. Hence by Koebe's theorem, we can map $F^{(\infty)}$ conformally on a schlicht domain D on the ζ -plane, whose boundary E is a non-dense perfect set, which is the singular set of a certain linear group of Schottky type. Myrberg¹⁾ proved:

THEOREM 1. E is of positive logarithmic capacity. In another paper²⁾, I have proved :

THEOREM 2. Every point of E is a regular point for Dirichlet problem.

Hence $F^{(\infty)}$ is of positive boundary and its Green's function $G(z, z_0)$ tends to zero, when z tends to the ideal boundary of $F^{(\infty)}$. Now instead of cutting F along p ring cuts, we cut F along q $(1 \leq q \leq p)$ ring cuts C_i $(i=1,2,\cdots,q)$ and let F_0 be the resulting surface. We take infinitely many same samples as F_0 and connect them along the opposite shores of C_i $(i=1,2,\cdots,q)$, then we obtain a covering surface $F_{(q)}^{(\infty)}$ of F. Then I have proved in another paper³ the following extension of Theorem 1.

THEOREM 3. $F_{(1)}^{(\infty)}$ is of null boundary, while if $q \ge 2$, $F_{(q)}^{(\infty)}$ is of positive boundary and there exists a non-constant bounded harmonic function on $F_{(q)}^{(\infty)}$, whose Dirichlet integral is finite.

In this paper, we shall prove the following extension of Theorem 2.

THEOREM 4. The Green's function $G(z, z_0)$ of $F_{(q)}^{(\infty)}(q \ge 2)$ tends to zero, when z tends to the ideal boundary of $F_{(q)}^{(\infty)}$.

¹⁾ P. J. MYRBERS: Die Kapaziät der singulären Menge der linearen Grupen, Ann. Acad. Fenn. Series A. Math.-Phys. 10(1941).

M. T_{SUJI}: On the uniformization of an algebraic function of genus $p \ge 2$, Tôhoku Math. Journ. 3(1951).

²⁾ M. T_{SUJI}: On the capacity of a general Cantor set, Jourual Math. Soc. Japan, 5(1953).

M.T_{SUJI} Theory: of meromorphic functions on an open Riemann surface with null boundary, Nagoya Math. Journ. 6(1953).