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1. Introduction. The concept of the conditional expectation in probability
theory is very important, especially fundamental for the martingale theory.
In a book [lp> of J. Doob, various properties of the conditional expectation
in a probability space are described for the random variables having the
expectations. While in a recent paper [2], Shuh-teh C. Moy has discussed
the characteristic properties of the conditional expectation as a linear trans-
formation of the space of all extended real-valued measurable functions on
a probability space into itself.

The present paper deals with the conditional expectation as a mapping
of a space of measurable operators belonging to a Z1-integrable class asso-
ciated with a certain PF*-algebra into itself. This generalization seems to
be a first attempt of a non-commutative probability theory. The non-com-
mutative integration theory0 of I. E. Segal (cf. [3]) has its due application in
the subject.

We shall show in §2, the existence of the conditional expectation for
the space of measurable operators of the ZMntegrable class associated with
a certain W*-algebra, and in § 3, the uniqueness in a certain sense of such a
mapping which is a generalization of a characterization theorem of S. C. Moy.

2. Existence of conditional expectation. Let A be a W*-algebra,
acting on a Hubert space H, with a complete (faithful) normal trace μ with

MD = 1.
Let Ai be an arbitrary (but fixed) W*-subalgebra of A. In this section

we shall introduce a conditional expectation in A relative to Aτ.
First we shall prove in Lι(A) the existence theorem of conditional ex-

pectation where Lι(A) CDnsists of all integrable operators on H with respect
to the ZΛnorm lx[U = μ{\x\) (cf. [3] Daf. 3. 2, Cor. 10.1 and Cor. 11. 3) which
are associated with the W*-algebra A. Similarly we denote the space Ll{A^)
associated with the W;ί-subalgebra AL, then L1 (Ax) can be considered as a
closed subspace of L\A).

THEOREM 1.3> There exists a mapping x-^ xefrom Lι(A) onto L\A^) satisfying
the following conditions' for any x, y € Lι{A) and any complex numbers ct, β

<i) {ax + βyy = ax" + βy,

1) Numbers in brackets refer to the reference at the end of the paper.
2) J. Dixmier has also described the similar theory under a different way (cf. [4]).

In the present paper, we shall use the definitions and terminologies of I.E.Segal (cf.
;[3]). We shall denote the product, sum laid difference of measurable "operators x,y
merely by xytx+y and x— y,e. g., ey implies x y in the notations in [3]. When x=y
nearly everywhere, we shall denote merely x~y (n. e.) or x=y.

3) After we had prove! the Tarn 1, we have been pointed out by M. Nakamura
that the existence of mapping x^>x' from A to Λi was proved by Dixmier using his
ooerator method (cf. Thm.8 of [4]). In this Όaper, we shall prove Thm. 1 by Radon-
Nikodym Thm. of Segal (cf. [3]) and extend it onto L\A).


