CONDITIONAL EXPECTATION IN AN OPERATOR ALGEBRA

HISAHARU UMEGAKI

(Received August 30, 1954)

1. Introduction. The concept of the conditional expectation in probability theory is very important, especially fundamental for the martingale theory. In a book [1]¹⁾ of J. Doob, various properties of the conditional expectation in a probability space are described for the random variables having the expectations. While in a recent paper [2], Shuh-teh C. Moy has discussed the characteristic properties of the conditional expectation as a linear transformation of the space of all extended real-valued measurable functions on a probability space into itself.

The present paper deals with the conditional expectation as a mapping of a space of measurable operators belonging to a L^1 -integrable class associated with a certain W^* -algebra into itself. This generalization seems to be a first attempt of a non-commutative probability theory. The non-commutative integration theory²⁾ of I. E. Segal (cf. [3]) has its due application in the subject.

We shall show in §2, the existence of the conditional expectation for the space of measurable operators of the L^1 -integrable class associated with a certain W^* -algebra, and in §3, the uniqueness in a certain sense of such a mapping which is a generalization of a characterization theorem of S. C. Moy.

2. Existence of conditional expectation. Let A be a W*-algebra, acting on a Hilbert space H, with a complete (faithful) normal trace μ with $\mu(1) = 1$.

Let A_1 be an arbitrary (but fixed) W*-subalgebra of A. In this section we shall introduce a conditional expectation in A relative to A_1 .

First we shall prove in $L^{1}(A)$ the existence theorem of conditional expectation where $L^{1}(A)$ consists of all integrable operators on H with respect to the L^{1} -norm $||x||_{1} = \mu(|x|)$ (cf. [3] Def. 3. 2, Cor. 10. 1 and Cor. 11. 3) which are associated with the W^{*} -algebra A. Similarly we denote the space $L^{1}(A_{1})$ associated with the W^{*} -subalgebra A_{1} , then $L^{1}(A_{1})$ can be considered as a closed subspace of $L^{1}(A)$.

THEOREM 1.³⁾ There exists a mapping $x \to x^e$ from $L^1(A)$ onto $L^1(A_1)$ satisfying the following conditions: for any $x, y \in L^1(A)$ and any complex numbers α, β

(i)
$$(\alpha x + \beta y)^s = \alpha x^s + \beta y^s$$
,

1) Numbers in brackets refer to the reference at the end of the paper.

2) J. Dixmier has also described the similar theory under a different way (cf. [4]). In the present paper, we shall use the definitions and terminologies of I. E. Segal (cf. [3]). We shall denote the product, sum land difference of measurable "operators x, y merely by xy, x+y and x-y, e.g., ey implies $x \cdot y$ in the notations in [3]. When x=y nearly everywhere, we shall denote merely x=y (n.e.) or x=y.

nearly everywhere, we shall denote merely x=y (n.e.) or x=y. 3) After we had proved the Tam 1, we have been pointed out by M. Nakamura that the existence of mapping $x \rightarrow x^2$ from A to A_1 was proved by Dixmier using his operator method (cf. Thm.8 of [4]). In this paper, we shall prove Thm. 1 by Radon-Nikodym Thm. of Segal (cf. [3]) and extend it onto $L^1(A)$.