ON FRACTIONAL INTEGRATION

SUMIYUKI KOIZUMI

(Received August 14, 1957)

1. Introduction. The present paper is devoted to give certain results for fractional integration which are related to the work of I.I. Hirschman, Jr.

Let $u(\theta)$ be a function in the class $L^{p}(0, 2\pi), p \ge 1$ with mean value zero and its Fourier series be

$$u(\theta) \sim \Sigma' a_n e^{in\theta}$$

where $-\infty < n < \infty$ and $n \neq 0$.

The fractional integral $u_{\alpha}(\theta)$ of $u(\theta)$ of order α is defined by

$$u_{\alpha}(\theta) \sim \Sigma' a_n (in)^{-\alpha} e^{in\theta}$$

and let the Abel mean of $u(\theta)$ and $u_{\alpha}(\theta)$ be

$$u(r,\theta) = \sum' a_n r^{|n|} e^{in\theta}$$
$$u_\alpha(r,\theta) = \sum' a_n (in)^{-\alpha} r^{|n|} e^{in\theta}$$

We consider the following functions, the first due to I. I. Hirschman, Jr. [1] and the remains to G. Sunouchi [3],

$$g(\alpha;\theta) = \left\{ \int_{0}^{1} (1-r)^{1-2\alpha} |u_{\alpha-1}(r,\theta)|^{2} dr \right\}^{1/2}$$

$$g^{*}(\alpha,\beta;\theta) = \left\{ \int_{0}^{1} (1-r)^{2(\beta-\alpha)} dr \int_{0}^{2\pi} \frac{|u_{\alpha-1}(r,\theta+t)|^{2}}{|1-re^{it}|^{2\beta}} dt \right\}^{1/2}$$

$$\delta(\alpha,k;\theta) = \left\{ \int_{0}^{2\pi} |\Delta_{t(k)}^{k+1} u_{\alpha}(\theta)|^{2} t^{-2\alpha-1} dt \right\}^{1/2},$$

where

$$\Delta_{i}^{1} u_{\alpha}(\theta) = u_{\alpha}(\theta + t) - u_{\alpha}(\theta - t)$$
$$\Delta_{i}^{k+1} u_{\alpha}(\theta) = \Delta_{i}^{1}(\Delta_{i}^{k} u_{\alpha}(\theta))$$
$$t(k) = t/2(k+1).$$

The main purpose of this paper is to prove the following:

THEOREM 1. Let $u(\theta) \in L^{\nu}(0, 2\pi)$, p > 1, then we have

$$\|\delta(\alpha, k; \theta)\|_p \leq A_p \|u\|_p$$

where $0 < \alpha < k + 1$ ($2), <math>2/p - 1 < \alpha < k + 1$ (1) and k is a positive integer or zero.

The constant A_p depends only on p, and not on the function $u(\theta)$.