ON THE CLASS OF SATURATION IN THE THEORY OF APPROXIMATION III¹⁾

GEN-ICHIRÔ SUNOUCHI

(Received January 26, 1961)

1. Introduction. Let f(x) be integrable $(-\pi, \pi)$ and be periodic with period 2π , and let

$$f(x) \sim \frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \equiv \sum_{n=0}^{\infty} A_n(x).$$

We denote the Riesz typical means of the above series by

$$X_n^k(x) = \sum_{\nu=0}^n A_{\nu}(x)(1 - \nu^k/n^k),$$

then the following results are known [A. Zygmund [6] and G. Sunouchi-C. Watari [5]).

- (1°) $|f(x) X_n^k(x)| = o(n^{-k})$ uniformly, implies that f(x) is a constant.
 - $|f(x) X_n^k(x)| = O(n^{-k}) \quad \text{uniformly, implies}$ $|f^{(k)}(x)| \leq M \quad \text{(when k is an even integer)}$ $|\widetilde{f}^{(k)}(x)| \leq M \quad \text{(when k is an odd integer)}.$
 - (3°) If $|f^{(k)}(x)| \le M$ (when k is an even integer) $|\widetilde{f}^{(k)}(x)| \le M$ (when k is an odd integer),

then

$$|f(x) - X_n^k(x)| = O(n^{-k})$$
 uniformly.

We denote the Riesz means of the α -th²⁾ order of the Fourier series of f(x) by

$$X_n^{k,(\alpha)}(x) = \sum_{\nu=0}^n A_{\nu}(x) (1 - \nu^k/n^k)^{\alpha},$$

then we have proved the same results. In fact, the propositions (1°) and (2°)

¹⁾ Research supported in part by the National Science Foundation (U.S.A.).

²⁾ We assume α is a positive integer. $X_n^{k,(\alpha)}(x)$ is different from ordinary Riesz means which have a continuous parameter n. But (C, α) -summability implies $X_n^{k,(\alpha)}$ -summability. See M. Riesz [3].