ALGEBRAIC DERIVATIONS IN THE FIELD OF MIKUSIŃSKI'S OPERATORS

MORISUKE HASUMI

(Received August 5, 1961)

Let \mathbb{S} be the set of complex-valued functions in \mathbb{R}^1 , continuous in $0 \leq t < +\infty$ and vanishing identically in t < 0. Under pointwise addition and convolution as multiplication, \mathbb{S} forms a commutative algebra over the complex numbers which contains no zero divisor. Elements of the quotient field \mathfrak{D} of the ring \mathbb{S} are the operators of Mikusiński. Every function f(t) in \mathbb{S} is regarded as an element of \mathfrak{D} which is denoted by $\{f\}$. Recently, Mikusiński [3] [4] has discussed some properties of an algebraic derivation D in \mathfrak{D} which is defined by $Du = \{-tu(t)\}$ for any $u \in \mathbb{S}$. In any algebra A, an algebraic derivation F is defined as a linear mapping of A into some algebra B, which contains A as a subalgebra, such that F(ab) = F(a)b + aF(b) for any $a, b \in A$. Here we shall study algebraic derivations in the field \mathfrak{D} which are continuous in some sense specified below. Since any derivation in \mathfrak{D} is completely determined by its effects on the ring \mathbb{S} , we have only to consider algebraic derivations from \mathbb{S} into \mathfrak{D} . Notations are the same as in Mikusiński [3], unless otherwise stated.

Clearly, \mathbb{S} is a locally convex space with respect to the topology of uniform convergence on compact sets in \mathbb{R}^1 . Moreover, it is a locally multiplicatively-convex *F*-algebra in the sense of Michael [2]. A sequence $\{a_n : n = 1, 2, ...\}$ in \mathbb{O} is said to be convergent to an element $a \in \mathbb{O}$ if there exists an element $b \in \mathbb{O}$ such that ba_n and ba are contained in \mathbb{S} and $ba_n \to ba$ with respect to the topology of \mathbb{S} . Then any sequence has at most one limit. The pseudo-topology of \mathbb{O} thus defined is used in what follows. It is known that there is no locally convex Hausdorff topology in \mathbb{O} which induces this notion of convergence for sequences (cf. [1], [3]).

THEOREM 1. A linear mapping F of \mathbb{S} into \mathbb{D} is a continuous derivation if and only if there exists an element $a \in \mathbb{D}$ such that F = aD, i.e. F(u) $= a \cdot D(u)$ for any $u \in \mathbb{S}$, where $D(u) = \{-tu(t)\}$.

PROOF. Let F be a continuous derivation of \mathbb{S} into \mathbb{D} . Since $\{t^k\} = k \mid l^{k+1}(k = 0, 1, 2, ...)$, any polynomial $\{f(t)\} = \left\{\sum_{k=0}^n \alpha_k t^k\right\}$ is expressed as