ALGEBRAIC DERIVATIONS IN THE FIELD OF MIKUSIŃSKI'S OPERATORS

MORISUKE HASUMI

(Received August 5,1961)

Let $\mathbb{5}$ be the set of complex-valued functions in R^{1}, continuous in $0 \leqq t$ $<+\infty$ and vanishing identically in $t<0$. Under pointwise addition and convolution as multiplication, $\sqrt{5}$ forms a commutative algebra over the complex numbers which contains no zero divisor. Elements of the quotient field \mathcal{D} of the ring \mathbb{C}^{5} are the operators of Mikusinski. Every function $f(t)$ in $\sqrt{5}$ is regarded as an element of \mathcal{D} which is denoted by $\{f\}$. Recently, Mikusiński [3] [4] has discussed some properties of an algebraic derivation D in \mathcal{D} which is defined by $D u=\{-t u(t)\}$ for any $u \in \mathbb{E}$. In any algebra A, an algebraic derivation F is defined as a linear mapping of A into some algebra B, which contains A as a subalgebra, such that $F(a b)=F(a) b+a F(b)$ for any $a, b \in A$. Here we shall study algebraic derivations in the field \mathfrak{D} which are continuous in some sense specified below. Since any derivation in \mathfrak{D} is completely determined by its effects on the ring \mathfrak{C}, we have only to consider algebraic derivations from \mathbb{S}^{5} into \mathfrak{D}. Notations are the same as in Mikusinski [3], unless otherwise stated.

Clearly, $\sqrt{5}$ is a locally convex space with respect to the topology of uniform convergence on compact sets in R^{1}. Moreover, it is a locally multiplica-tively-convex F-algebra in the sense of Michael [2]. A sequence $\left\{a_{n}: n=1\right.$, $2, \ldots\}$ in \mathcal{D} is said to be convergent to an element $a \in \mathcal{D}$ if there exists an element $b \in \mathfrak{D}$ such that $b a_{n}$ and $b a$ are contained in \mathfrak{C} and $b a_{n} \rightarrow b a$ with respect to the topology of \mathfrak{G}. Then any sequence has at most one limit. The pseudo-topology of \mathfrak{D} thus defined is used in what follows. It is known that there is no locally convex Hausdorff topology in \mathcal{D} which induces this notion of convergence for sequences (cf. [1], [3]).

THEOREM 1. A linear mapping F of $\mathfrak{(5}$ into \mathfrak{D} is a continuous derivation if and only if there exists an element $a \in \mathfrak{D}$ such that $F=a D$, i.e. $F(u)$ $=a \cdot D(u)$ for any $u \in \mathbb{E}$, where $D(u)=\{-t u(t)\}$.

PROOF. Let F be a continuous derivation of \mathbb{C} into \mathfrak{D}. Since $\left\{t^{t}\right\}=$ $k!l^{k+1}(k=0,1,2, \ldots)$, any polynomial $\{f(t)\}=\left\{\sum_{k=0}^{n} \alpha_{k} t^{t}\right\}$ is expressed as

