ON THE SATURATION AND BEST APPROXIMATION

GEN-ICHIRÔ SUNOUCHI

(Received April 16, 1962)

Let f(x) be an integrable function with period 2π and let its Fourier series be

$$a_0/2 + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx) = \sum_{k=0}^{\infty} A_k(x).$$

Denote the method of typical means of this series by

$$R_n^{\lambda}(f) = \sum_{k=0}^{n-1} \left(1 - \frac{k^{\lambda}}{n^{\lambda}}\right) A_k(x).$$

Then this method saturates with the order $n^{-\lambda}$, that is, we have

THEOREM A. For the typical means,

(1°)
$$f - R_n^{\lambda}(f) = o(n^{-\lambda}) \iff f = a \text{ constant},$$

$$(2^{0}) \quad f - R_{n}^{\lambda}(f) = O(n^{-\lambda}) \iff f \in W^{\lambda},$$

where W^{λ} means the class of functions for which

$$\sum_{k=1}^{\infty} k^{\lambda} A_k(x) \sim f^{\lambda} \in L^{\infty}(0, 2\pi).$$

See Aljančić [1], Sunouchi [3] Sunouchi-Watari [4]. Recently Aljančić [2] proved the following the rm.

THEOREM B. Let $k = 0, 1, \dots$ and $0 < \alpha \le 1$. Then

$$f^{(k)}(x) \in {}^{2}\Lambda_{\alpha}(k+\alpha < \lambda) \iff f - R_{n}^{\lambda}(f) = O(n^{-k-\alpha}),$$

where $f^{(k)}(x) \in {}^{2}\Lambda_{\alpha}$ means

$$f^{(k)}(x+h) + f^{(k)}(x-h) - 2f^{(k)}(x) = O(|h|^{\alpha}).$$

However this fact is not confined to only the typical means, but also is valid for more general approximation processes. Indeed we can deduce Theorem B from Theorem A by method of the moving average.

THEOREM. Let $k = 0, 1, 2, \dots$, and $0 < \alpha \le 1$. Suppose that for linear approximation processes $T_n(f)$

$$(1^{\circ})$$
 $|f(x)| \leq M_1$ implies $|T_n(f)(x)| \leq k_1 M_1$, and