ON GENERALIZED CESÀRO MEANS OF INTEGRAL ORDER

Dennis C. Russell.¹⁾

(Received August 26, 1965)

1. Introduction. It is the object of this paper to consider some of the properties of a λ -type generalization (C, λ, κ) of Cesàro summability, which reduces to (C, κ) when $\lambda_n = n$. We shall be concerned mainly with the relations between (C, λ, κ) and other summability methods, notably the Riesz method (R, λ, κ) and a more general method (G, λ) defined by means of a function g. Except in this introductory section, we shall deal almost entirely with methods of integral order (we draw attention to this by writing p in place of κ), and we suppose throughout that $\lambda = \{\lambda_n\}$ is a sequence satisfying

$$0 \leq \lambda_0 < \lambda_1 < \cdots < \lambda_n \to \infty$$
.

Given any series²⁾ $\sum a_{\nu}$, and any $\kappa \ge 0$, denote

$$A^{\kappa}(\omega) = \sum_{\lambda_{\nu} < \omega} (\omega - \lambda_{\nu})^{\kappa} a_{\nu};$$

if $\omega^{-\kappa} A^{\kappa}(\omega) \to s \text{ as } \omega \to +\infty$

then we say that $\sum a_{\nu}$ is Riesz summable (R, λ, κ) to s. When $\omega \to \infty$ through the sequence $\{\lambda_n\}$, we obtain the definition of 'discontinuous' Riesz summability (R^*, λ, κ) , and we may then relax the restriction on κ to $\kappa > -1$; thus $\sum a_{\nu}$ is summable (R^*, λ, κ) to s if $\lambda_n^{-\kappa} A^{\kappa}(\lambda_n) \to s$.

It is of course trivial that³), for any $\{\lambda_n\}$ and any $\kappa \ge 0$,

$$(R, \lambda, \kappa) \subseteq (R^*, \lambda, \kappa)$$
.

¹⁾ This paper was written while the author was a Fellow at the Summer Research Institute of the Canadian Mathematical Congress, Vancouver, 1965.

²⁾ Unless otherwise specified, limits of summation or integration are assumed throughout to be 0, ∞ .

³⁾ Given two summability methods A, B, we say that A is included in B (written $A \subseteq B$) if every series summable-A is also summable-B (to the same value); A and B are equivalent (written $A \sim B$) if each includes the other.