ON GENERALIZED CESÀRO MEANS OF INTEGRAL ORDER

Dennis C. Russell. ${ }^{1)}$

(Received August 26, 1965)

1. Introduction. It is the object of this paper to consider some of the properties of a λ-type generalization (C, λ, κ) of Cesàro summability, which reduces to (C, κ) when $\lambda_{n}=n$. We shall be concerned mainly with the relations between (C, λ, κ) and other summability methods, notably the Riesz method (R, λ, κ) and a more general method (G, λ) defined by means of a function g. Except in this introductory section, we shall deal almost entirely with methods of integral order (we draw attention to this by writing p in place of κ), and we suppose throughout that $\lambda=\left\{\lambda_{n}\right\}$ is a sequence satisfying

$$
0 \leqslant \lambda_{0}<\lambda_{1}<\cdots<\lambda_{n} \rightarrow \infty .
$$

Given any series ${ }^{2)} \sum a_{\nu}$, and any $\kappa \geqslant 0$, denote
if

$$
A^{\kappa}(\omega)=\sum_{\lambda_{\nu}<\omega}\left(\omega-\lambda_{\nu}\right)^{\kappa} a_{v} ;
$$

$$
\omega^{-\kappa} A^{\kappa}(\omega) \rightarrow s \quad \text { as } \quad \omega \rightarrow+\infty
$$

then we say that $\sum a_{\nu}$ is Riesz summable (R, λ, κ) to s. When $\omega \rightarrow \infty$ through the sequence $\left\{\lambda_{n}\right\}$, we obtain the definition of 'discontinuous' Riesz summability (R^{*}, λ, κ), and we may then relax the restriction on κ to $\kappa>-1$; thus $\sum a_{\nu}$ is summable $\left(R^{*}, \lambda, \kappa\right)$ to s if $\lambda_{n}^{-\kappa} A^{\kappa}\left(\lambda_{n}\right) \rightarrow s$.

It is of course trivial that ${ }^{3}$, for any $\left\{\lambda_{n}\right\}$ and any $\kappa \geqslant 0$,

$$
(R, \lambda, \kappa) \subseteq\left(R^{*}, \lambda, \kappa\right) .
$$

[^0]
[^0]: 1) This paper was written while the author was a Fellow at the Summer Research Institute of the Canadian Mathematical Congress, Vancouver, 1965.
 2) Unless otherwise specified, limits of summation or integration are assumed throughout to be $0, \infty$.
 3) Given two summability methods A, B, we say that A is included in B (written $A \subseteq B$) if every series summable- A is also summable- B (to the same value); A and B are equivalent (written $A \sim B$) if each includes the other.
