INVARIANT SUBMANIFOLDS IN A SASAKIAN MANIFOLD

KATSUEI KENMOTSU

(Received May 15, 1969)

1. Introduction. The theory of invariant submanifolds in a contact Riemannian manifold was initiated by M. Okumura [5].

In this note we wish to classify invariant submanifolds of codimension 2 which are η -Einstein manifolds in a Sasakian manifold with constant ϕ -sectional curvature.

To state the main theorem we prepare the followings. An odd dimensional Euclidean space E^{2n+1} (resp. an odd dimensional sphere S^{2n+1}) has the standard Sasakian structure with constant ϕ -sectional curvature H=-3 (resp. H>-3) [9]. By CD^n , L and (L, CD^n) we denote the open unit ball in a complex n-dimensional Euclidean space C^n , a real line and the product bundle $L \times CD^n$. The (L, CD^n) also has a Sasakian structure with constant ϕ -sectional curvature H < -3 [9]. Let Q^{n-1} be an (n-1)-dimensional complex quadric in a complex projective space $P^n(C)$ of complex dimension n. By (S, Q^{n-1}) we denote a circle bundle over Q^{n-1} . Then (cf. [1, p. 61]) since Q^{n-1} is a Kaehlerian manifold of restricted type, (S, Q^{n-1}) defines a Sasakian structure [6]. Since Q^{n-1} $(n \ge 3)$ is Einsteinian, (S, Q^{n-1}) is η -Einsteinian [8]. Henceforth let \widetilde{M} be one of the E^{2n+1} , S^{2n+1} and (L, CD^n) and \widetilde{B} be C^n (if $\widetilde{M}=E^{2n+1}$), $P^n(C)$ (if $\widetilde{M}=S^{2n+1}$) and CD^n (if $\widetilde{M}=(L, CD^n)$). \widetilde{M} is a principal G^1 -bundle over \widetilde{B} and G^1 is a circle or a line. $\pi: \widetilde{M} \longrightarrow \widetilde{B}$ denotes the projection. We may prove the following theorem.

THEOREM. i) S^{2n-1} and (S, Q^{n-1}) are the only connected complete invariant submanifolds in S^{2n+1} which are η -Einsteinian.

ii) (L, CD^{n-1}) (resp. E^{2n-1}) is the only connected complete invariant submanifold in (L, CD^n) (resp. E^{2n+1}) which is η -Einsteinian.

I wish to express my sincere gratitude to Professor S. Sasaki and Dr. S. Tanno for their kind guidance.

2. Local results. (ϕ, ξ, η, g) denote the tensors of the Sasakian structure of \widetilde{M} . Let M be a connected contact manifold of dimension 2n-1 which is