NOTE ON THE RE-TOPOLOGIZATION OF A SPACE BY A SET OF OPERATORS

Yoshio Itagaki

(Received November 6, 1968)

Let $\left\{T_{i}\right\}(i \in A)$ be a set of linear operators in a locally convex vector space E. In [2], M. Nagumo tried to adopt a new topology on E, which makes each T_{i} be continuous and makes it possible to extend T_{i} on all elements of E. His method is a generalization of a so-called Lax's negative norms. As the special cases of it we get Schwartz's distribution space and others. The purpose of this paper is to weaken the condition on E supposed by M. Nagumo. It may be said that our proof corresponds naturally to the technique used in the extension of differential operators.

As J. E. Roberts noted in [4], in particular taking a countable set of closed operators in a Hilbert space, we meet with a countably Hilbert space in the sense of Gel'fand [1]. We note here that the converse is also true, more precisely, that the topology of any countably Hilbert space can be constructed as the projective limit by a set of self-adjoint operators in a Hilbert space.

Let E be a separated locally convex vector space and $\left\{T_{i}\right\}(i \in A)$ be a set of linear operators from E to E. We assume that $D\left(T_{i}\right)$, the domain of each T_{i}, is dense in E and that the set $\left\{T_{i}\right\}$ contains identity operator I. We shall from now onwards take the set of operators satisfying the following condition:
(C). $F=\bigcap_{i \in A} D\left(T_{i}{ }^{\prime}\right)$ is total over E, i.e., the element x of E, for which $\langle f, x\rangle=0$ for all f of F, is zero element. Here by T_{i}^{\prime} we denote the transpose of T_{i}.

If the set $D\left(T_{i}{ }^{\prime}\right)$ is total over E, T_{i} is a pre-closed operator. Therefore when the above condition is satisfied, all T_{i} are pre-closed. For the reflexive space E condition (C) means that F is dense in E^{\prime}, the dual space of E. Here the dual space of E is considered under the strong topology $\beta\left(E^{\prime}, E\right)$. We shall denote it by E_{β}^{\prime} later.

Our main problem is to introduce a suitable topology in E and to make any T_{i} continuous from $D_{i}=D\left(T_{i}\right)$ to E. In that case, space E under such a topology we denote by \widehat{E}, and write completion of \widehat{E} by \widehat{E}. Then, under the

