Tôhoku Math. Journ. 21(1969), 389-405

SOME TAUBERIAN THEOREMS CONCERNING (S^*, μ) TRANSFORMATIONS

DANY LEVIATAN

(Received July 30, 1968)

1. Introduction. The regular series to sequence (S^*, μ) transform of a series $\sum_{i=0}^{\infty} a_i$ is defined as follows :

(1. 1)
$$S_n^*(\boldsymbol{\beta}) = \sum_{i=0}^{\infty} a_i \sum_{k=i}^{\infty} \binom{k+n}{n} \int_0^1 (1-t)^k t^{n+1} d\boldsymbol{\beta}(t), n \ge 0,$$

where $\beta(t)$ satisfies

(1.2) $\beta(t)$ is of bounded variation in [0, 1], $\beta(1) - \beta(0+) = 1$ and $\beta(1) = \beta(1-)$.

The series to sequence (S^*, μ) transformation is the series to sequence analogues of the sequence to sequence (S^*, μ) transformation defined by Ramanujan [7] §4. We shall be interested in finding Tauberian estimates of the following form. For a series $\sum_{i=0}^{\infty} a_i$ denote $s_n = \sum_{i=0}^{n} a_i$, then what is the best possible constant A satisfying

$$\limsup_{\lambda \to \infty} |S_{n(\lambda)}^*(\beta) - s_{m(\lambda)}| \leq A \limsup_{n \to \infty} |na_n|$$

where $n(\lambda)$, $m(\lambda)$ are given functions assuming integral values only, and all series $\sum_{i=0}^{\infty} a_i$ satisfying the Tauberian condition

(1.3)
$$\limsup |na_n| < \infty.$$

What is the best constant B satisfying

$$\limsup_{\lambda \to \infty} |S_{n(\lambda)}^*(\beta) - S_{m(\lambda)}^*(\gamma)| \leq B \limsup_{n \to \infty} |na_n|$$

where $\gamma(t)$ is another function satisfying (1.2), $n(\lambda)$, $m(\lambda)$ are as before and