REMARKS ON THE RIESZ DECOMPOSITION FOR SUPERMARTINGALES ## NORIHIKO KAZAMAKI (Received 26 December 1969) In this paper we shall give an another proof of the Riesz decomposition theorem for supermartingales and we shall consider on the Riesz-type decomposition for local supermartingales. 1. Let $(\Omega, \mathfrak{F}, P)$ be the basic P-complete probability space and let \mathfrak{F}_n be a sub σ -field of \mathfrak{F} such that $\mathfrak{F}_m \subset \mathfrak{F}_n$ whenever m < n. It is clear that $E[x_n]$ decreases if (x_n, \mathfrak{F}_n) is a supermartingale. We assume here the integrability of x_n for each n. Theorem 1. Let (x_n, \mathfrak{F}_n) be a supermartingale. Then x_n can be written as $$x_n = x_n^* + y_n$$ where (x_n^*, \mathfrak{F}_n) is a martingale and (y_n, \mathfrak{F}_n) is a positive supermartingale if and only if $$\inf_{n} E[x_n] > -\infty$$ (there is no uniqueness) PROOF. The condition is obviously necessary. Let us prove the sufficiency. Since (x_n, \mathcal{F}_n) is a supermartingale, we have $$E[x_{n+k+1}|\mathfrak{F}_n] \leq E[x_{n+k}|\mathfrak{F}_n] \leq x_n$$. Put for each n $$x_n^* = \lim_{k \to \infty} E[x_{n+k} | \mathfrak{F}_n].$$ Clearly $x_n - x_n^* \ge 0$ and x_n^* is \mathfrak{F}_n -measurable. If the condition (A) is fulfilled, then from the monotone convergence theorem we have