REMARKS ON THE RIESZ DECOMPOSITION FOR SUPERMARTINGALES

NORIHIKO KAZAMAKI

(Received 26 December 1969)

In this paper we shall give an another proof of the Riesz decomposition theorem for supermartingales and we shall consider on the Riesz-type decomposition for local supermartingales.

1. Let $(\Omega, \mathfrak{F}, P)$ be the basic P-complete probability space and let \mathfrak{F}_n be a sub σ -field of \mathfrak{F} such that $\mathfrak{F}_m \subset \mathfrak{F}_n$ whenever m < n. It is clear that $E[x_n]$ decreases if (x_n, \mathfrak{F}_n) is a supermartingale. We assume here the integrability of x_n for each n.

Theorem 1. Let (x_n, \mathfrak{F}_n) be a supermartingale. Then x_n can be written as

$$x_n = x_n^* + y_n$$

where (x_n^*, \mathfrak{F}_n) is a martingale and (y_n, \mathfrak{F}_n) is a positive supermartingale if and only if

$$\inf_{n} E[x_n] > -\infty$$

(there is no uniqueness)

PROOF. The condition is obviously necessary. Let us prove the sufficiency. Since (x_n, \mathcal{F}_n) is a supermartingale, we have

$$E[x_{n+k+1}|\mathfrak{F}_n] \leq E[x_{n+k}|\mathfrak{F}_n] \leq x_n$$
.

Put for each n

$$x_n^* = \lim_{k \to \infty} E[x_{n+k} | \mathfrak{F}_n].$$

Clearly $x_n - x_n^* \ge 0$ and x_n^* is \mathfrak{F}_n -measurable. If the condition (A) is fulfilled, then from the monotone convergence theorem we have