ON THE ABSOLUTE SUMMABILITY FACTORS OF INFINITE SERIES

S.M.MAZHAR

(Received November 24, 1970)

1. Let Σa_{n} be a given infinite series with s_{n} as its n-th partial sum. We denote by $\left\{\sigma_{n}^{\alpha}\right\}$ and $\left\{t_{n}^{\alpha}\right\}$ the n-th $(C, \alpha),(\alpha>-1)$ means of the sequences $\left\{s_{n}\right\}$ and $\left\{n a_{n}\right\}$ respectively. A series Σa_{n} is said to be summable $|C, \alpha|$ if $\Sigma\left|\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right|<\infty$ and summable $|C, \alpha|_{k}, k \geqq 1, \alpha>-1$ if

$$
\begin{equation*}
\sum n^{k-1}\left|\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right|^{k}<\infty \tag{1.1}
\end{equation*}
$$

In view of the well known identity $t_{n}^{\alpha}=n\left(\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right)$, the condition (1.1) can also be written as

$$
\begin{equation*}
\sum_{1}^{\infty} \frac{\left|t_{n}^{\alpha}\right|^{k}}{n}<\infty . \tag{1.2}
\end{equation*}
$$

Let $\left\{p_{n}\right\}$ be a sequence of positive real constants such that $P_{n}=p_{0}+p_{1}$ $+\cdots+p_{n} \rightarrow \infty$ as $n \rightarrow \infty$. A series Σa_{n} is said to be summable $\left|\bar{N}, p_{n}\right|$ if $t_{n}^{*} \in B V$, where

$$
t_{n}^{*}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} s_{k} .
$$

For $p_{n}=\frac{1}{n+1}$ the summability $\left|\bar{N}, p_{n}\right|$ is equivalent to the well known summability $|R, \log n, 1|$.

For any real α and integers $n \geqq 0$, we define $\Delta U_{n}=\sum_{v=n}^{\infty} A_{v-n}^{-\alpha-1} U_{v}$, whenever the series is convergent.
2. It is known that summability $\left|\bar{N}, p_{n}\right|$ and the summability $|C, \alpha|_{k}$ are, in general, independent of each other. It is, therefore, natural to find out suitable summability factors $\left\{\varepsilon_{n}\right\}$ so that $\Sigma a_{n} \varepsilon_{n}$ may be summable $|C, \alpha|_{k}, \alpha>-1, k \geqq 1$, whenever Σa_{n} is summable $\left|\bar{N}, p_{n}\right|$, and conversely, if Σa_{n} is summable $|C, \alpha|_{k}$ then $\sum a_{n} \varepsilon_{n}$ may be summable $\left|\bar{N}, p_{n}\right|$. In a recent paper [5] the author has

