Tôhoku Math. Journ. 23(1971), 433-451.

ON THE ABSOLUTE SUMMABILITY FACTORS OF INFINITE SERIES

S.M.MAZHAR

(Received November 24, 1970)

1. Let Σa_n be a given infinite series with s_n as its *n*-th partial sum. We denote by $\{\sigma_n^{\alpha}\}$ and $\{t_n^{\alpha}\}$ the *n*-th (C, α) , $(\alpha > -1)$ means of the sequences $\{s_n\}$ and $\{na_n\}$ respectively. A series Σa_n is said to be summable $|C, \alpha|$ if $\Sigma |\sigma_n^{\alpha} - \sigma_{n-1}^{\alpha}| < \infty$ and summable $|C, \alpha|_k$, $k \ge 1$, $\alpha > -1$ if

(1.1)
$$\sum n^{k-1} |\sigma_n^{\alpha} - \sigma_{n-1}^{\alpha}|^k < \infty.$$

In view of the well known identity $t_n^{\alpha} = n(\sigma_n^{\alpha} - \sigma_{n-1}^{\alpha})$, the condition (1, 1) can also be written as

(1.2)
$$\sum_{n=1}^{\infty} \frac{|t_n^{\alpha}|^k}{n} < \infty$$

Let $\{p_n\}$ be a sequence of positive real constants such that $P_n = p_0 + p_1 + \dots + p_n \to \infty$ as $n \to \infty$. A series $\sum a_n$ is said to be summable $|\overline{N}, p_n|$ if $t_n^* \in BV$,

$$t_n^* = \frac{1}{P_n} \sum_{k=0}^n p_k s_k \, .$$

For $p_n = \frac{1}{n+1}$ the summability $|\overline{N}, p_n|$ is equivalent to the well known summability $|R, \log n, 1|$.

For any real α and integers $n \ge 0$, we define $\overset{\alpha}{\bigtriangleup} U_n = \sum_{v=n}^{\infty} A_{v-n}^{-\alpha-1} U_v$, whenever the series is convergent.

2. It is known that summability $|\overline{N}, p_n|$ and the summability $|C, \alpha|_k$ are, in general, independent of each other. It is, therefore, natural to find out suitable summability factors $\{\varepsilon_n\}$ so that $\Sigma a_n \varepsilon_n$ may be summable $|C, \alpha|_k, \alpha > -1, k \ge 1$, whenever Σa_n is summable $|\overline{N}, p_n|$, and conversely, if Σa_n is summable $|C, \alpha|_k$ then $\Sigma a_n \varepsilon_n$ may be summable $|\overline{N}, p_n|$. In a recent paper [5] the author has

where