ON THE LAW OF THE ITERATED LOGARITHM FOR LACUNARY TRIGONOMETRIC SERIES

Dedicated to Professor Gen-ichirô Sunouchi on his 60th birthday

Shigeru Takahashi

(Received Jan. 18, 1971)

1. Introduction. Throughout this note we set

$$
S_{N}(x)=\sum_{k=1}^{N} a_{k} \cos 2 \pi\left(n_{k} x+\alpha_{k}\right) \quad \text { and } \quad A_{N}=\left(2^{-1} \sum_{k=1}^{N} a_{k}^{2}\right)^{1 / 2},
$$

where $\left\{n_{k}\right\}$ is a sequence of positive integers and we assume that

$$
A_{N} \rightarrow+\infty ; \quad \text { as } N \rightarrow+\infty
$$

In [2] M. Weiss has proved the following
Theorem. If $\left\{n_{k}\right\}$ and $\left\{a_{k}\right\}$ satisfy the conditions

$$
\begin{equation*}
n_{k+1} / n_{k}>1+c, \quad \text { for some } c>0 \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{N}=o\left(\sqrt{A_{N}^{2} / \log \log A_{N}}\right), \quad \text { as } N \rightarrow+\infty, \tag{1.3}
\end{equation*}
$$

then we have, for any sequence of real numbers $\left\{\alpha_{k}\right\}$,

$$
\varlimsup_{N \rightarrow \infty}\left(2 A_{N}^{2} \log \log A_{N}\right)^{-1 / 2} S_{N}(x)=1,
$$

That is, the same law of the iterated logarithm holds for

$$
\left\{\cos 2 \pi\left(n_{k} x+\alpha_{k}\right)\right\}
$$

as for the sequence of normalized, uniformly bounded independent random variables with vanishing mean values.

The purpose of the present note is to weaken the lacunarity condition (1.2). But we could show only the inequality "lim $\leqq 1$ ". In fact we prove the following

Theorem. Let $\left\{n_{k}\right\}$ and $\left\{a_{k}\right\}$ satisfy the conditions

$$
\begin{equation*}
n_{k+1} / n_{k}>1+c k^{-\alpha}, \quad \text { for some } c>0 \text { and } 0<\alpha \leqq 1 / 2, \tag{1.4}
\end{equation*}
$$

and

