Tôhoku Math. Journ. 24 (1972), 319-329.

ON THE LAW OF THE ITERATED LOGARITHM FOR LACUNARY TRIGONOMETRIC SERIES

Dedicated to Professor Gen-ichirô Sunouchi on his 60th birthday

SHIGERU TAKAHASHI

(Received Jan. 18, 1971)

1. Introduction. Throughout this note we set

where $\{n_k\}$ is a sequence of positive integers and we assume that (1.1) $A_N \rightarrow +\infty$; as $N \rightarrow +\infty$.

In [2] M. Weiss has proved the following

THEOREM. If $\{n_k\}$ and $\{a_k\}$ satisfy the conditions

$$(1.2)$$
 $n_{k+1}/n_k > 1+c$, for some $c>0$,

and

(1.3)
$$a_N = o(\sqrt{A_N^2/\log\log A_N})$$
, $as N \to +\infty$,

then we have, for any sequence of real numbers $\{\alpha_k\}$,

$$\overline{\lim_{N \to \infty}} (2A_N^2 \log \log A_N)^{-1/2} S_N(x) = 1$$
, a.e.

That is, the same law of the iterated logarithm holds for

 $\{\cos 2\pi (n_k x + \alpha_k)\}$

as for the sequence of normalized, uniformly bounded independent random variables with vanishing mean values.

The purpose of the present note is to weaken the *lacunarity* condition (1.2). But we could show only the inequality " $\overline{\lim} \leq 1$ ". In fact we prove the following

THEOREM. Let $\{n_k\}$ and $\{a_k\}$ satisfy the conditions

(1.4)
$$n_{k+1}/n_k > 1 + c \ k^{-\alpha}$$
, for some $c > 0$ and $0 < \alpha \le 1/2$,

and

(1.5)
$$a_N = O(\sqrt{A_N^2/N^{2\alpha}(\log A_N)^{1+\varepsilon}})$$
, for some $\varepsilon > 0$, as $N \to +\infty$.