ERGODIC THEOREMS FOR SEMI-GROUPS IN $L_{p}, 1<p<\infty$

Ryotaro Sato

(Received November 30, 1972)

1. Introduction. In what follows we shall assume p fixed, $1<p<\infty$. Let (X, \mathscr{M}, m) be a σ-finite measure space and let $\left\{T_{t} ; t \geqq 0\right\}$ be a semigroup of positive linear operators in $L_{p}(X)=L_{p}(X, \mathscr{M}, m)$ which is strongly integrable over every finite interval. It is then known (cf. [2], p. 686) that for each $f \in L_{p}(X)$ there exists a scalar function $T_{t} f(X)$, measurable with respect to the product of Lebesgue measure and m, such that for almost all $t, T_{t} f(x)$ belongs to the equivalence class of $T_{t} f$. Moreover there exists a set $E(f)$ with $m(E(f))=0$, dependent on f but independent of t, such that if $x \notin E(f)$ then $T_{t} f(x)$ is integrable on every finite interval [a, b] and the integral $\int_{a}^{b} T_{t} f(x) d t$, as a function of x, belongs to the equivalence class of $\int_{a}^{b} T_{t} f d t$. We write $S_{a}{ }^{b} f(x)$ for $\int_{a}^{b} T_{t} f(x) d t$. The purpose of this note is to investigate the almost everywhere convergence of $S_{0}{ }^{b} f(x) / S_{0}{ }^{b} g(x)$ and $S_{0}{ }^{b} f(x) / b$ as $b \uparrow \infty$.
2. Preliminaries. If $A \in \mathscr{M}$ then $L_{p}(A)$ denotes the Banach space of all $L_{p}(X)$-functions that vanish a.e. on $X-A$. A set $A \in \mathscr{M}$ is called closed under a positive linear operator T on $L_{p}(X)$ if $f \in L_{p}(A)$ implies $T f \in L_{p}(A)$. The adjoint operator of T is denoted by T^{*}.

Proposition. If T is a positive linear operator on $L_{p}(X)$ such that $\sup _{n}\left\|(1 / n) \sum_{k=0}^{n-1} T^{k}\right\|_{p}<\infty$ and $\lim _{n}\left\|(1 / n) T^{n} f\right\|_{p}=0$ for every $f \in L_{p}(X)$, then the space X uniquely decomposes into two measurable sets Y and Z such that
(a) Z is closed under T,
(b) if $f \in L_{p}(Z)$ then $\lim _{n}\left\|(1 / n) \sum_{k=0}^{n-1} T^{k} f\right\|_{p}=0$,
(c) there exists a nonnegative function u in $L_{q}(Y)$ such that $u>0$ a.e. on Y and $T^{*} u=u$, where $q=p /(p-1)$.

Proof. We may choose a nonnegative function u in $L_{q}(X)$ such that $T^{*} u=u$ and if $0 \leqq v \in L_{q}(X)$ is invariant under T^{*} then supp $v \subset \operatorname{supp} u$. Let $Y=\operatorname{supp} u$ and $Z=X-Y$. Since $T^{*} u=u$, (a) is obvious. To see (b), let $0 \leqq g \in L_{p}(Z)$. Then the mean ergodic theorem ([2], p. 661) implies that strong- $\lim _{n}(1 / n) \sum_{k=0}^{n=1} T^{k} g=g_{0}$ for some $0 \leqq g_{0} \in L_{p}(Z)$ with $T g_{0}=g_{0}$. Here

