Tôhoku Math. Journ. 27 (1975), 69-74.

EXISTENCE OF ALMOST PERIODIC SOLUTIONS BY LIAPUNOV FUNCTIONS

F. NAKAJIMA

(Received December 8, 1973)

1. Introduction. The existence of almost periodic solutions of almost periodic systems has been studied by many authors. Generally, the existence of a bounded solution does not imply the existence of almost periodic solutions [4]. To obtain almost periodic solutions, we need additional conditions, for example, separation conditions and stability conditions. Another approach is to assume the existence of a Liapunov function with some properties ([2], [5]). Relationships between separation conditions and stability conditions have been discussed by the author [3].

In this paper, by assuming the existence of some Liapunov function, we shall obtain an existence theorem for an almost periodic solution, which improves Fink and Seifert's result [2] and proves Yoshizawa's result [5] as a corollary.

We denote by \mathbb{R}^n the Euclidean *n*-space and set $\mathbb{R} = \mathbb{R}^1$ and $\mathbb{R}^+ = [0, \infty)$. Let |x| be the Euclidean norm of $x \in \mathbb{R}^n$.

2. Theorem and some remarks. Consider the almost periodic system

(2.1)
$$x' = f(t, x)$$
 $(' = d/dt)$,

where $x, f \in \mathbb{R}^n$ and f(t, x) is defined on $\mathbb{R} \times D$, D open set of \mathbb{R}^n , and is almost periodic in t uniformly for $x \in D$. The following theorem is an improvement of Fink and Seifert's result [2].

THEOREM. Suppose that the system (2.1) has a solution $\phi(t)$ such that $\phi(t) \in K$ on R^+ , where K is a compact subset of D, and assume that there exists a continuous scalar function V(t, x) defined on $R^+ \times D$, which satisfies the following conditions:

(i) $V(t, \phi(t))$ is bounded on R^+ ,

(ii) $|V(t, x) - V(t, y)| \leq L |x - y|$ for $x, y \in S$, $t \in R^+$, where S is any compact subset of D and L may depend on S,

(iii) $\dot{V}(t, x) \ge a(|x - \phi(t)|)$, where a(r) is continuous and positive definite and

$$\dot{V}(t, x) = \overline{\lim_{h \to +0}} \frac{1}{h} \left\{ V(t+h, x+hf(t, x)) - V(t, x) \right\}.$$