A THEOREM ON LIMITS OF KLEINIAN GROUPS

Ніго-о Чамамото

(Received July 8, 1974)

1. Let G be a group of conformal automorphisms of the extended complex plane $\hat{C}=C\cup\{\infty\}$. Every element of G is a Möbius transformation of the form

$$T: z \mapsto \frac{az+b}{cz+d}$$
 ,

where a, b, c and d are complex numbers with ad - bc = 1. This transformation T is often identified with $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in PSL(2, C) and, in this case, a + d is called the trace of T and is denoted by trace T.

If there does not exist a sequence of G which converges to the identity under the topology of PSL(2, C), then G is called discrete.

A point $w \in \hat{C}$ is called a limit point of G provided that there exist a point $z \in \hat{C}$ and a sequence $\{T_i\}_{i=1}^{\infty}$ of elements of G such that $T_i \neq T_k(j \neq k)$ and such that $T_i(z) \to w$ as $i \to \infty$. If a point $w \in \hat{C}$ is not a limit point of G, it is called an ordinary point of G. Denote by A(G) the set of all limit points of G and by A(G) the set of all ordinary points of G. If A(G) is not empty, then A(G) is called a discontinuous group. If the limit set of a discontinuous group A(G) contains more than two points, then G is called kleinian. A discontinuous group not being kleinian is said to be elementary. It is known that a kleinian group contains infinitely many loxodromic elements and the set of attracting fixed points of loxodromic elements in G is dense in A(G).

An isomorphism ϕ of a kleinian group G_1 onto a kleinian group G_2 is said to be type preserving if $\phi(T)$ is parabolic if and only if T is parabolic.

Let T be a Möbius transformation of the form

$$T: z \mapsto \frac{az+b}{cz+d}$$
, $c \neq 0$.

Then we call two circles I(T): |z + d/c| = 1/|c| and $I(T^{-1})$: |z - a/c| = 1/|c| the isometric circles of T and of T^{-1} , respectively. It is known that T maps the exterior of I(T) onto the interior of $I(T^{-1})$. Since the radii of I(T) and $I(T^{-1})$ are both equal to 1/|c| and since the distance of the center of I(T) from that of $I(T^{-1})$ equals |(a + d)/c|, a necessary and sufficient