DISCONTINUOUS GROUPS OF AFFINE TRANSFORMATIONS OF C^{3}

Kôji Uchida and Hisao Yoshimara

(Received January 30, 1975)

1. Introduction. Let G be a group of affine transformations acting freely and properly discontinuously on \boldsymbol{C}^{n}. Suppose that \boldsymbol{C}^{n} / G is compact. Let G_{0} be the subgroup of G consisting of translations, which is a normal subgroup of G. Moreover we assume that $H=G / G_{0}$ is a finite group. Enriques and Severi show that in the case of surfaces i.e., $n=2, H$ is a cyclic group of order $d, d=1,2,3,4,6,[1]$. In this paper in the case of $n=3$ we shall prove the following

Theorem. If H is cyclic, then $H \cong Z / d, d=1,2,3,4,5,6,8,10,12$. If H is not cyclic but abelian, then $H \cong \boldsymbol{Z} / d_{1} \oplus \boldsymbol{Z} / d_{2},\left(d_{1}, d_{2}\right)=(2,2),(2,4)$, $(2,6),(2,12),(3,3),(3,6),(4,4),(6,6)$. Finally, if H is not abelian, then H is D_{4} : a dihedral group of order 8.
2. Let g be an affine transformation of C^{n} i.e., $g x=A(g) x+a(g)$ where $x \in \boldsymbol{C}^{n}, A(g) \in G L(n, C), a(g) \in \boldsymbol{C}^{n}$. If g has no fixed points, then at least one eigenvalue of $A(g)$ has to be 1 . It is easy to see that if g has no fixed points, then g^{m} has no fixed points. We call $A(g)$ the holonomy part of g and A a holonomy representation.

Proposition 1. Let G be the group in Introduction. If K is an abelian subgroup of G with finite index, then G_{0} contains K i.e., G_{0} is the largest abelian subgroup of G with finite index.

Proof. As K is commutative, all the elements of K can be diagonalized simultaneously. Suppose $K-G_{0} \neq \varnothing$ and choose $g \in K-G_{0}$. Then $g x_{j}=\alpha_{j} x_{j}+a_{j}$, where $\alpha_{1}=1, \alpha_{n} \neq 1$. May assume $a_{n}=0$, because otherwise we consider $h g h^{-1}$ instead of g, h being a translation defined by ${ }^{t}\left(0, \cdots, 0, a_{n} /\left(\alpha_{n}-1\right)\right)$. Owing to the commutativity of K this implies that any $g^{\prime} \in K$ acts like $g^{\prime} x_{n}=\beta_{n} x_{n}$. Hence C^{n} / K is not compact, which contradicts the assumption $|G: K|<\infty$.

Corollary 1. Let G^{\prime} be the group similar to G. If $G \underset{\rightrightarrows}{\leadsto} G^{\prime}$ by an isomorphism φ, then $\varphi G_{0}=G_{0}^{\prime}$. Hence $H=G / G_{0} \leadsto H^{\prime}=G^{\prime} / G_{0}^{\prime}$.

Proof. $\varphi\left(G_{0}\right) \subset G_{0}^{\prime}$, and $\varphi^{-1}\left(G_{0}^{\prime}\right) \subset G_{0}$, by Proposition 1 .

