ON CYCLOTOMIC Z₂-EXTENSIONS OF IMAGINARY QUADRATIC FIELDS

Yûji Kida

(Received March 4, 1978, revised October 13, 1978)

Let $K = Q(\sqrt{-m})$ for a positive square-free integer m. For each $n \ge 0$, let B_n be the maximal real subfield of the cyclotomic field of the 2^{n+2} -th roots of unity. Let $B_{\infty} = \bigcup_{n=0}^{\infty} B_n$ and let $K_{\infty} = B_{\infty} \cdot K$. Then the extension K_{∞}/K is called a cyclotomic Z_2 -extension. Let h_n be the class number of $K_n = B_n \cdot K$ and let 2^{e_n} be the exact power of 2 dividing h_n . Iwasawa proved, in [2] and [3], that there exist an integer $n_0 \ge 0$ and an integer c such that

$$(1)$$
 $e_n = \lambda n + c$ for all $n \ge n_0$,

where λ is the invariant of this Z_2 -extension.

The group-theoretic meaning of this invariant λ is as follows. Let A_n be the 2-Sylow subgroup of the ideal class group of K_n . For each $m \ge n \ge 0$, the norm map from K_m to K_n defines a morphism from A_m to A_n . Let X be the limit of this projective system, then as an abelian group

$$(\ 2\) \qquad \qquad X\cong Z_2^{\scriptscriptstyle \lambda}\oplus T \; ,$$

where T is a finite abelian 2-group. This integer λ coincides with that of (1).

We always define the natural action of $\Gamma = \operatorname{Gal}(K_{\infty}/K)$ on X and call X the Iwasawa module for K_{∞}/K as a Γ -module. The action of Γ will be used in Section 4.

In this paper, we shall determine the right hand side of (2), especially the invariant λ , and find a value of n_0 satisfying (1).

Finally, the author would like to express his hearty thanks to Professor K. Uchida for his kind encouragement and guidance.

(Added on October 13, 1978)

After this paper was accepted for publication, the author received the preprint by B. Ferrero entitled "The cyclotomic \mathbb{Z}_2 -extension of imaginary quadratic fields" in which he proves the same formula for the invariant λ by a purely algebraic method. Moreover, his Theorem 5 c) and f) implies the torsion subgroup T in our Theorem 1 is in fact of order 2.