THE DUAL SPACE OF THE SPACE BMO FOR A STOCHASTIC POINT PROCESS

HIROAKI MORIMOTO

(Received October 23, 1978, revised March 13, 1979)

1. Introduction. Let (Ω, F, P) be a complete probability space endowed with a non-decreasing right continuous family $(F_t)_{t\geq 0}$ of sub σ -fields of F with $F = \bigvee_{t\geq 0} F_t$ such that F_0 contains all null sets. Let λ be a non-negative predictable process such that $P(\int_0^t \lambda_s ds < \infty) = 1$ for all t. An F_t -adapted process $N = (N_t)$ is called a stochastic point process with the intensity λ if N has right continuous paths taking values in $Z_+ = \{0, 1, 2, \cdots\}$ with $N_0 = 0$, $\Delta N_t = N_t - N_{t-} = 0$ or 1, and if $\hat{N}_t = N_t - \int_0^t \lambda_s ds$ is a local martingale. Throughout, we assume that the stochastic point process N with the intensity λ satisfies the following conditions:

(S) $F_t = \sigma(N_s, s \leq t)$, i.e., F_t is the completion of the σ -field generated by $(N_s, s \leq t)$,

(B) \hat{N} belongs to the space BMO.

Then we can define the finite measure μ on the σ -field Ξ of all predictable subsets A of $[0, \infty) \times \Omega$ by

$$(\ 1 \) \qquad \qquad \mu(A) = E iggl[\int_0^\infty I_A \lambda_s ds iggr] \, .$$

We shall adopt the following notations and definitions:

(2) $L^{1}(\mu)$ denotes the set of all predictable processes f with $||f||_{L^{1}(\mu)} < \infty;$

(3)
$$L^{\infty}(\mu) = \{f \in L^{1}(\mu); ||f||_{L^{\infty}(\mu)} < \infty\};$$

(5)
$$U(f)(t) = \int_0^t f_s d\hat{N}_s \quad \text{for} \quad f \in L^1(\mu) ;$$