SPECTRAL LITTLEWOOD-PALEY DECOMPOSITIONS

GARTH I. GAUDRY

(Received April 24, 1979)

1. Introduction. Let G be a compact abelian group with dual \hat{G} , and suppose that E is a subset of \hat{G} . Suppose that $(\Delta_j)_0^{\infty}$ is a decomposition of E, i.e., that each Δ_j is a subset of E, the Δ_j are pairwise disjoint, and that $\bigcup \Delta_j = E$. We say that (Δ_j) is a Littlewood-Paley (or LP) decomposition of E if, for every p in $(1, \infty)$ there is a pair of positive constants A_p and B_p such that

(1)
$$A_p ||f||_p \leq ||(\sum |S_{d_j}f|^2)^{1/2}||_p \leq B_p ||f||_p$$

for all trigonometric polynomials f with spectrum in E. Here $S_{\Delta_j}f$, which we shall frequently denote $S_j f$, is the partial sum of the Fourier series of f over Δ_j . The function $(\sum |S_j(f)|^2)^{1/2}$ is denoted S(f).

When G = T, and E = Z, classical theorems of Littlewood and Paley furnish examples of nontrivial LP decompositions: e.g., the collection of "dyadic intervals" constitutes such a decomposition; from this basic example, many others can be built up. See [2].

Now if (Δ_j) is a decomposition of E, p > 2, and each (Δ_j) is a singleton set, then the inequality (1) amounts to the statement that E is a $\Lambda(p)$ set. In the opposite vein, if (Δ_j) is an LP decomposition of E and F is a set formed by selecting at most one element from each Δ_j , then F is a $\Lambda(p)$ set for every p. Given the extent of the literature on $\Lambda(p)$ sets, it seems natural to attempt to give examples of groups \hat{G} , proper subsets E of \hat{G} and associated LP decompositions (Δ_j) of E.

As just indicated, this can be done trivially when E is a $\Lambda(p)$ set for all p. Another way is to take an LP decomposition of a group \hat{G} and then let E be the union of all but one of the sets of that decomposition. Our aims should therefore be stated more precisely: we wish to produce sets E, and associated decompositions (Δ_j) , such that (i) (Δ_j) is an LP decomposition of E; and (ii) ξ_E , the characteristic function of E, is a (Fourier) multiplier of L^p for no p other than 2. Note that if (δ_j) is an LP decomposition of \hat{G} , then the characteristic function of each δ_j is a Fourier multiplier of L^p (1 .

In her paper [1], Bonami showed how to construct various classes of sets which are $\Lambda(p)$ for all p, and gave precise asymptotic estimates