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0. Introduction. Recently various p-adic analogues of arithmetic
functions are constructed. Kubota and Leopoldt [4] constructed p-adic
L-functions by interpolating the values at nonpositive integers of
Dirichlet L-functions. Morita [6] constructed a p-adic analogue of the
Hurwitz-Lerch L-function L(s, a, b, X) = ΣΓ=i X(n)bn(a + n)~8 from the
same point of view. In this paper, we construct a p-adic analogue of
the Hurwitz L-function L(s, a, X) = L(s, α, 1, X) as a power series at
s = 0.

In §1, we calculate the higher derivatives at s = 0 of the complex
Hurwitz L-function (Theorem 1). In §2, we obtain a lemma for p-adic
interpolation. We construct in §3.1 p-adic analogues af(a, X) of the
coefficients of the expansion at s = 0 of the complex Hurwitz L-function.
We then define a p-adic function ζp(s, a, X) by

and show in §3.2 that this function coincides with Morita's p-adic analogue
in the case of b = 1.
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1. Complex Hurwitz L-functions. 1.1. We denote by Q, R and C
the fields of rational numbers, real numbers and complex numbers,
respectively. We denote by Res the real part of s.

Let X be a Dirichlet character with conductor /, and let L(s, X) be
the Dirichlet L-function for the character X. Put δχ = 1 if X is trivial,
and dχ = 0 otherwise. We define complex numbers βt(X) (I ̂  0) by

βι{l) = (-D'tfir Σ Z(α) Hm \± fl<« («* + «»' _ frg frm + α)}'"1 .

α=i n-oo Lfc=o mA; + α m(ί + 1) J

Then we have the following:

PROPOSITION 1. For any positive multiple m of /, we have


