ON SPHERICAL REPRESENTATION OF AN m-DIMENSIONAL SUBMANIFOLD IN THE EUCLIDEAN n-SPACE

Dedicated to Professor Shigeo Sasaki on his seventieth birthday

Yosio Mutō

(Received January 9, 1982)

1. Introduction. The spherical representation of a curve in the Euclidean 3 -space is a representation on the unit sphere S^{2} obtained with the use of tangent vectors. We consider a generalization of the notion of spherical representations to an m-dimensional submanifold in the Euclidean n-space. We denote a submanifold by (i, M) where M is an m-dimensional manifold and i is an immersion $i: M \rightarrow R^{n}$. If the spherical representation of (i, M) is regular, the image is an immersed submanifold of dimension $2 m-1$ in the unit hypersphere of R^{n}. Any submanifold and its infinitesimal deformations we consider are assumed to be C^{∞}.

Let p be any point of M and $\{O\}_{p}$ be the origin of $T_{p}(M)$. To any half line of $T_{p}(M)$ from $\{O\}_{p}$ there corresponds a point of the unit hypersphere $S_{0}^{n-1}(1)$ of R^{n}. Taking all points p of M and all half lines of $T_{p}(M)$ from $\{O\}_{p}$ we get the spherical representation of (i, M).

For our purpose a little more precise description will be preferable. Any immersion i of M induces a Riemannian metric g on M and this determines the unit hypersphere $S_{p}(M)$ of $T_{p}(M)$. For any point (i, p) of (i, M) there exists just one m-dimensional tangent plane of (i, M) and in this tangent plane we can take a hypersphere of radius 1 and with center (i, p). Let us denote this hypersphere by ($i^{\prime}, S_{p}(M)$). Then for any point $q \in S_{p}(M)$ we have just one point $\left(i^{\prime}, q\right)$ of R^{n}. Let O be the origin of R^{n} and $O X$ be the oriented segment obtained by a parallel translation of oriented segment joining (i, p) to (i^{\prime}, q). Then X is a point of $S_{0}^{n-1}(1)$. Thus a mapping $s: S(M) \rightarrow S_{0}^{n-1}(1)$ is obtained such that $s(q)=X$ and we call s the spherical representation of (i, M), or the spherical representation of M induced by the immersion i.

In the present paper we consider only such cases that s is an immersion. Then s is called a regular spherical representation or a regular spherical map and its image a spherical image.

We take a compact orientable manifold M and consider the integral I of the volume element of the spherical image $s(S(M)) . \quad I$ is a functional

