RATIONAL MAPPINGS OF DEL PEZZO SURFACES, AND SINGULAR COMPACTIFICATIONS OF TWO-DIMENSIONAL AFFINE VARIETIES*

DAVID BINDSCHADLER, LAWRENCE BRENTON AND DANIEL DRUCKER

(Received December 5, 1983)

Introduction. Let F be an algebraically closed field and let (X, \mathcal{O}_X) be a two-dimensional, rational, normal compact Gorenstein space over F. If the anticanonical divisor of X is ample, then X is called a (possibly singular) *Del Pezzo surface*. For F = C, these surfaces were studied systematically by Du Val [12] in his investigation of the relation between rational double points and subgroups of reflection groups of regular polyhedra (cf. also [8], [13], [20]). They have recently attracted new interest as singular fibres of versal deformations of elliptic singularities ([9], [16], [21], [26]). We have studied certain of these spaces as examples of singular complex surfaces of the homology, cohomology, or homotopy type of \mathbb{CP}^2 ([2], [7]).

If X is a Del Pezzo surface, the *degree* of X is the integer $d = K \cdot K$, where K is the canonical divisor. If X is singular, each singularity is a double point of type A_k , D_k , or E_k , and the Dynkin diagram Γ correponding to the singular set is the Coxeter graph of a subgroup of one of the reflection groups A_1 , $A_2 + A_1$, A_4 , D_5 , or E_k , $6 \leq k \leq 8$ ([12]). The number n of vertices of Γ is always less than or equal to 9 - d; if n =9 - d, X will be called maximally degenerate. In this case $H^i(X, Q) \cong$ $H^i(P^2, Q) \forall i$, with $H^1(X, Z) \cong 0$, $H^2(X, Z) \cong Z$, and $H^s(X, Z)$ a finite group of order $\sqrt{(\det(\Gamma))/d}$, where $\det(\Gamma)$ is the determinant of the associated Cartan matrix. Except when X is the singular quadric hypersurface $Q_0^2 \subset P^8(F)$, the Chern class of K generates $H^2(X, Z)$ and so the degree also gives the cohomology ring structure. In the maximally degenerate case (but not in general), the singularity type determines the surface up to a deformation through fibres of the same singularity type ([12], [20]).

Now let X be any Del Pezzo surface. Since X is rational, there exists a birational mapping f of X onto $P^2(F)$. Factoring f into a

^{*} Some of the results of Part I of this paper were announced in [3], where a preliminary version of the present paper was referred to under the title: Graph theoretic techniques in algebraic geometry III.