ON ALGEBRAIC INDEPENDENCE OF SPECIAL VALUES OF GAP SERIES

Masaaki Amou

(Received July 17, 1984)

Introduction. In this paper we extend the result of Bundschuh and Wylegala [4].

Let $f(z)=\sum_{k=0}^{\infty} a(k) z^{e(k)}$ be a power series, where the $a(k)(k \geqq 0)$ are non-zero algebraic numbers and where the $e(k)(k \geqq 0)$ form an increasing sequence of non-negative integers. We denote by $A(f, n)$ the maximum of the $\mid \overline{a(k) \mid}(0 \leqq k \leqq n)$, where for any $k(0 \leqq k \leqq n)$ the $\mid \overline{a(k) \mid}$ is the maximum of the absolute values of the conjugates of $a(k)$. We denote by $M(f, n)$ is the least positive integer d such that $d \cdot a(k)(0 \leqq k \leqq n)$ are all algebraic integers, and by $S(f, n)$ is the degree of $\boldsymbol{Q}(\alpha(k) ; 0 \leqq k \leqq n)$ over \boldsymbol{Q}. In [4], Bundschuh and Wylegala proved that $f\left(\alpha_{1}\right), \cdots, f\left(\alpha_{m}\right)$ are algebraically independent for any algebraic numbers $\alpha_{1}, \cdots, \alpha_{m}$ with $0<$ $\left|\alpha_{1}\right|<\cdots<\left|\alpha_{m}\right|<R(f)$, if the condition

$$
\lim _{n \rightarrow \infty} S(f, n)(e(n)+\log A(f, n)+\log M(f, n)) / e(n+1)=0
$$

is satisfied. In §1, we extend this result as follows. Let $f_{i}(z)=$ $\sum_{k=0}^{\infty} a(i, k) z^{e(i, k)}(1 \leqq i \leqq m)$ be gap series, where the $a(i, k)(1 \leqq i \leqq m$, $k \geqq 0$) are non-zero algebraic numbers and where for any $i(1 \leqq i \leqq m)$ the $e(i, k)$ ($k \geqq 0$) form an increasing sequence of non-negative integers, and let $\alpha_{i}(1 \leqq i \leqq m)$ be algebraic numbers with $0<\left|\alpha_{i}\right|<R\left(f_{i}\right)$. We put $A(n)=\max \left\{A\left(f_{i}, n\right) ; 1 \leqq i \leqq m\right\}, M(n)=$ l.c.m. $\left\{M\left(f_{i}, n\right) ; 1 \leqq i \leqq m\right\}$, $S(n)=[\boldsymbol{Q}(\alpha(i, k) ; 1 \leqq i \leqq m, 0 \leqq k \leqq n): \boldsymbol{Q}], E(n)=\max \{e(i, n), 1 \leqq i \leqq m\}$, $e(n)=\min \{e(i, n) ; 1 \leqq i \leqq m\}$. Then we have the following.

Theorem. $f_{1}\left(\alpha_{1}\right), \cdots, f_{m}\left(\alpha_{m}\right)$ are algebraically independent if the following two conditions are satisfied:
(i) $\lim _{n \rightarrow \infty} S(n)(E(n)+\log A(n)+\log M(n)) / e(n+1)=0$;
(ii) $\left|a(i+1, n) \alpha_{i+1}^{e(i+1, n)}\right|=o\left(\left|a(i, n) \alpha_{i}^{e(i, n)}\right|\right)$ as $n \rightarrow \infty(1 \leqq i \leqq m-1)$.

Our proof of this result is closely related to the proof of the result of Shiokawa [16].

For example, put $f(z)=\sum_{k=0}^{\infty} z^{k!}$. Let $\alpha_{j}(1 \leqq j \leqq m)$ be algebraic numbers satisfying $0<\left|\alpha_{m}\right|<\cdots<\left|\alpha_{1}\right|<1$. Then the numbers $f^{(i)}\left(\alpha_{j}\right)$ ($0 \leqq i \leqq l, 1 \leqq j \leqq m$) are algebraically independent.

