SHIMURA CURVES AS INTERSECTIONS OF HUMBERT SURFACES AND DEFINING EQUATIONS OF QM-CURVES OF GENUS TWO

KI-ICHIRO HASHIMOTO AND NAOKI MURABAYASHI

(Received January 17, 1994, revised November 25, 1994)

Abstract. Shimura curves classify isomorphism classes of abelian surfaces with quaternion multiplication. In this paper, we are concerned with a fibre space, the base space of which is a Shimura curve and fibres are curves of genus two whose jacobian varieties are abelian surfaces of the above type. We shall give an explicit defining equation for such a fibre space when the discriminant of the quaternion algebra is 6 or 10.

Introduction. Let A be a simple principally polarized abelian variety of dimension two over the complex number field C, and End(A) the ring of endomorphisms of A. Then, as is well-known, the Q-algebra $\text{End}^{\circ}(A) := \text{End}(A) \otimes_{\mathbb{Z}} Q$ is of one of the following types:

(i) a CM-field of degree four, (ii) an indefinite quaternion algebra,

(iii) a real quadratic field, or (iv) the rational number field Q.

Let $\mathscr{A}_{2,1}$ be the moduli space of the isomorphism classes of abelian surfaces with principal polarization. The locus of each type in $\mathscr{A}_{2,1}$ has dimension 0, 1, 2, 3, respectively, whose irreducible components in the first three cases are called (i) CM-points, (ii) Shimura curves, and (iii) Humbert surfaces. On the other hand, it is also well-known that the Torelli map gives a birational morphism from $\mathscr{A}_{2,1}$ to the moduli space \mathscr{M}_2 of curves of genus two.

In this paper we are concerned with constructing, in a concrete way, an algebraic family of curves of genus two whose jacobian varieties belong to the case (ii) above. Namely, we wish to find out an equation for a fibre space, the base space of which is a Shimura curve and fibres are curves of genus two whose jacobian varieties have quaternion multiplications. Call such curves simply "QM-curves". We shall give defining equations over the rational number field Q for the algebraic family of QM-curves when the endomorphism ring is, generically, a maximal order O of the indefinite quaternion algebra B over Q which ramifies exactly at $\{2, 3\}$ or $\{2, 5\}$. To the best of our knowledge, not a single concrete example of *simple* QM-curves has been known before. Indeed, it is quite difficult to show that the jacobian variety of a given curve is simple.

The method of our construction is roughly as follows: In a classical work of Humbert [8], one can find general approach, as well as concrete solutions in some

¹⁹⁹¹ Mathematics Subject Classification. Primary 11G15; Secondary 11G18, 14G35, 14H40.