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Abstract. Shimura curves classify isomorphism classes of abelian surfaces with
quaternion multiplication. In this paper, we are concerned with a fibre space, the base
space of which is a Shimura curve and fibres are curves of genus two whose jacobian
varieties are abelian surfaces of the above type. We shall give an explicit defining equation
for such a fibre space when the discriminant of the quaternion algebra is 6 or 10.

Introduction. Let 4 be a simple principally polarized abelian variety of dimension
two over the complex number field C, and End(A4) the ring of endomorphisms of A.
Then, as is well-known, the @-algebra End°(4): =End(4) ®  Q is of one of the following
types:

(i) a CM-field of degree four, (ii) an indefinite quaternion algebra,

(iii) a real quadratic field, or (iv) the rational number field Q.

Let o/, be the moduli space of the isomorphism classes of abelian surfaces with
principal polarization. The locus of each type in &, ; has dimension 0, 1, 2, 3, respec-
tively, whose irreducible components in the first three cases are called (i) CM-points,
(ii) Shimura curves, and (iii) Humbert surfaces. On the other hand, it is also well-
known that the Torelli map gives a birational morphism from ./, ; to the moduli
space . , of curves of genus two.

In this paper we are concerned with constructing, in a concrete way, an algebraic
family of curves of genus two whose jacobian varieties belong to the case (ii) above.
Namely, we wish to find out an equation for a fibre space, the base space of which is
a Shimura curve and fibres are curves of genus two whose jacobian varieties have
quaternion multiplications. Call such curves simply ‘“QM-curves”. We shall give defining
equations over the rational number field Q for the algebraic family of QM-curves when
the endomorphism ring is, generically, a maximal order @ of the indefinite quaternion
algebra B over Q which ramifies exactly at {2, 3} or {2, 5}. To the best of our knowledge,
not a single concrete example of simple QM-curves has been known before. Indeed, it
is quite difficult to show that the jacobian variety of a given curve is simple.

The method of our construction is roughly as follows: In a classical work of
Humbert [8], one can find general approach, as well as concrete solutions in some

1991 Mathematics Subject Classification. Primary 11G15; Secondary 11G18, 14G35, 14H40.



