THE TORSIONFREE PART OF THE ZIEGLER SPECTRUM OF RG WHEN R IS A DEDEKIND DOMAIN AND G IS A FINITE GROUP

A. MARCJA, M. PREST, AND C. TOFFALORI

§1. Introduction. For every ring S with identity, the (right) Ziegler spectrum of S, Zg_S , is the set of (isomorphism classes of) indecomposable pure injective (right) S-modules. The Ziegler topology equips Zg_S with the structure of a topological space. A typical basic open set in this topology is of the form

$$(\varphi/\psi) = \{ M \in Zg_S : |\varphi(M) : \varphi(M) \cap \psi(M)| > 1 \}$$

where φ and ψ are pp-formulas (with at most one free variable) in the first order language L_S for S-modules; let $[\varphi/\psi]$ denote the closed set $Zg_S - (\varphi/\psi)$. There is an alternative way to introduce the Ziegler topology on Zg_S . For every choice of two f.p. (finitely presented) S-modules A, B and an S-module homomorphism $f:A\to B$, consider the set (f) of the points N in Zg_S such that some S-homomorphism $h:A\to N$ does not factor through f. Take (f) as a basic open set. The resulting topology on Zg_S is, again, the Ziegler topology.

The algebraic and model-theoretic relevance of the Ziegler topology is discussed in [Z], [P] and in many subsequent papers, including [P1], [P2] and [P3], for instance. Here we are interested in the Ziegler spectrum Zg_{RG} of a group ring RG, where R is a Dedekind domain of characteristic 0 (for example R could be the ring Z of integers) and G is a finite group. In particular we deal with the R-torsionfree points of Zg_{RG} .

The main motivation for this is the study of RG-lattices (i.e., finitely generated R-torsionfree RG-modules). Their model theory has been treated in several papers (see [T], for instance). Here we try to understand their role within the spectrum.

The analysis of the *R*-torsionfree part of Zg_{RG} is developed in § 2. *RG*-lattices are directly dealt with in § 3.

In § 2. we show that every R-torsionfree point of the Ziegler spectrum of RG either is a simple KG-module, where K denotes the quotient field of R, or is R-reduced and is then a point of the Ziegler spectrum of \hat{R}_PG for some maximal prime ideal P, where \hat{R}_P denotes the completion of R at P. Fix such a prime P. We show that the topology on the R-torsionfree R-reduced points which are \hat{R}_P -modules is the same whether these are considered as points of the spectrum of RG or of \hat{R}_PG . We also show that every such point is in the topological closure of the set of such points which are \hat{R}_PG -lattices. Then we investigate how these "P-patches" fit into the Ziegler spectrum of RG.

Received September 19, 2000; revised January 8, 2002.