GENERALIZED R-COHESIVENESS AND THE ARITHMETICAL HIERARCHY: A CORRECTION TO "GENERALIZED COHESIVENESS"

CARL G. JOCKUSCH, JR.* AND TAMARA J. LAKINS^{†,‡}

Abstract. For $X \subseteq \omega$, let $[X]^n$ denote the class of all *n*-element subsets of *X*. An infinite set $A \subseteq \omega$ is called *n*-*r*-*cohesive* if for each computable function $f : [\omega]^n \to \{0, 1\}$ there is a finite set *F* such that *f* is constant on $[A - F]^n$. We show that for each $n \ge 2$ there is no Π_n^0 set $A \subseteq \omega$ which is *n*-*r*-cohesive. For n = 2 this refutes a result previously claimed by the authors, and for $n \ge 3$ it answers a question raised by the authors.

§1. Introduction. A generalized notion of cohesiveness, which arises in connection with effective versions of Ramsey's theorem, was studied by Hummel and Jockusch in [1]. For any set X, let $[X]^n$ denote the class of all *n*-element subsets of X. A k-coloring f of $[X]^n$ is a function $f: [X]^n \to \{0, 1, \ldots, k-1\}$. A set $A \subseteq X$ is homogeneous for a coloring f of $[X]^n$ if $f \upharpoonright [A]^n$ is constant, i.e., if all *n*-element subsets of A are assigned the same color by f; n is called the *exponent* of the coloring. An infinite version of Ramsey's theorem states that for any infinite set X and any k-coloring f of $[X]^n$, there exists an infinite set $A \subseteq X$ which is homogeneous for f. A 2-coloring f of $[\omega]^n$ is called *computably enumerable* (or *c.e.*) if either $f^{-1}(0)$ or $f^{-1}(1)$ is c.e. when finite sets are identified with their canonical indices.

DEFINITION 1.1.

- (1) A set A is almost homogeneous for a coloring f if there exists a finite set F such that A F is homogeneous for f.
- (2) An infinite set A ⊆ ω is *n*-cohesive (respectively, *n*-*r*-cohesive) if it is almost homogeneous for every computably enumerable (respectively, computable) 2-coloring of [ω]ⁿ.

It is easy to see that when n = 1, we obtain the usual definition of a cohesive or r-cohesive set. Thus, there exists a Π_1^0 1-cohesive set, i.e., a comaximal set (see [5], Theorem X.3.3).

Jockusch [3] (Theorems 4.2 and 5.5) proved that for $n \ge 1$, every computable k-coloring of $[\omega]^n$ has an infinite Π_n^0 homogeneous set, and this result was shown to also hold for computably enumerable (c.e.) 2-colorings by Hummel and Jockusch

© 2002, Association for Symbolic Logic 0022-4812/02/6703-0014/\$1.50

Received November 13, 2001; accepted January 18, 2002.

^{*}Research partially supported by NSF Grant DMS-98-03073.

[†]Formerly Tamara J. Hummel.

 $^{{}^{\}ddagger}\mbox{Research}$ partially supported by Allegheny College Academic Support Committee sabbatic leave grant.