GENERALIZED R-COHESIVENESS AND THE ARITHMETICAL HIERARCHY: A CORRECTION TO "GENERALIZED COHESIVENESS"

CARL G. JOCKUSCH, JR.* AND TAMARA J. LAKINS ${ }^{\dagger}$. \ddagger

Abstract

For $X \subseteq \omega$, let $[X]^{n}$ denote the class of all n-element subsets of X. An infinite set $A \subseteq \omega$ is called n-r-cohesive if for each computable function $f:[\omega]^{n} \rightarrow\{0,1\}$ there is a finite set F such that f is constant on $[A-F]^{n}$. We show that for each $n \geq 2$ there is no Π_{n}^{0} set $A \subseteq \omega$ which is n-r-cohesive. For $n=2$ this refutes a result previously claimed by the authors, and for $n \geq 3$ it answers a question raised by the authors.

§1. Introduction. A generalized notion of cohesiveness, which arises in connection with effective versions of Ramsey's theorem, was studied by Hummel and Jockusch in [1]. For any set X, let $[X]^{n}$ denote the class of all n-element subsets of X. A k-coloring f of $[X]^{n}$ is a function $f:[X]^{n} \rightarrow\{0,1, \ldots, k-1\}$. A set $A \subseteq X$ is homogeneous for a coloring f of $[X]^{n}$ if $f \upharpoonright[A]^{n}$ is constant, i.e., if all n-element subsets of A are assigned the same color by $f ; n$ is called the exponent of the coloring. An infinite version of Ramsey's theorem states that for any infinite set X and any k-coloring f of $[X]^{n}$, there exists an infinite set $A \subseteq X$ which is homogeneous for f. A 2-coloring f of $[\omega]^{n}$ is called computably enumerable (or c.e.) if either $f^{-1}(0)$ or $f^{-1}(1)$ is c.e. when finite sets are identified with their canonical indices.

Definition 1.1.

(1) A set A is almost homogeneous for a coloring f if there exists a finite set F such that $A-F$ is homogeneous for f.
(2) An infinite set $A \subseteq \omega$ is n-cohesive (respectively, n-r-cohesive) if it is almost homogeneous for every computably enumerable (respectively, computable) 2 -coloring of $[\omega]^{n}$.

It is easy to see that when $n=1$, we obtain the usual definition of a cohesive or r-cohesive set. Thus, there exists a $\Pi_{1}^{0} 1$-cohesive set, i.e., a comaximal set (see [5], Theorem X.3.3).

Jockusch [3] (Theorems 4.2 and 5.5) proved that for $n \geq 1$, every computable k-coloring of $[\omega]^{n}$ has an infinite Π_{n}^{0} homogeneous set, and this result was shown to also hold for computably enumerable (c.e.) 2-colorings by Hummel and Jockusch

[^0]
[^0]: Received November 13, 2001; accepted January 18, 2002.
 *Research partially supported by NSF Grant DMS-98-03073.
 ${ }^{\dagger}$ Formerly Tamara J. Hummel.
 ${ }^{\ddagger}$ Research partially supported by Allegheny College Academic Support Committee sabbatic leave grant.

