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OUTER MODELS AND GENERICITY

M. C. STANLEY

�
1. Introduction. Why is forcing the only known method for constructing outer

models of set theory?
If V is a standard transitive model of ZFC, then a standard transitive modelW
of ZFC is an outer model of V if V � W and V � OR =W � OR.
Is every outer model of a given model a generic extension? At one point Solovay
conjectured that if 0# exists, then every real that does not construct 0# lies in L[G ],
for some G that is generic for some forcing ��� L. Famously, this was refuted by
Jensen’s coding theorem. He produced a real that is generic for an L-definable class
forcing property, but does not lie in any set forcing extension of L.
Beller, Jensen, and Welch in Coding the universe [BJW] revived Solovay’s conjec-
ture by asking the following question: Let a � ù be such that L[a] � “ 0# does not
exist”. Is there a b � L[a] such that a /� L[b] and a is set generic over L[b].
In [S1] it was shown that even if arbitrary inner models are allowed, rather than
just ones of the form L[b], and even if we allow a to be class generic, the answer is
No in general:

Theorem 1.1. Let Lα be a minimal countable standard transitive model of ZFC.
There exists a real xnwg having the following three properties:

(1) xnwg /� Lα .
(2) Lα[xnwg] � ZFC.
(3) xnwg is not definably generic over any outer model of Lα that does not already
contain xnwg.

Aprecise statement of (3) is the following: Assume thatV is an outermodel ofLα
and that � is aV -amenable partial ordering such that (V ; � ) satisfies ZFC. Assume
that the forcing relation restricted to sentences of bounded complexity is definable
over (V ; � ). (See Remark 1.8 regarding this hypothesis.) IfG is a maximal filter on
� meeting every dense subclass of � that is definable over (V ; � ) and xnwg � V [G ],
then xnwg � V .
For the sake of clarity, an elementary remark is in order. As is customary, we
write “V ” for the standard structure (V ; � ). If S � V, then “(V ;S) satisfies ZFC”
means that (V ;S, � ) satisfies ZFC in an enlarged language with a predicate symbol
for S. In this case the axioms of ZFC are augmented by instances of Collection
and Separation formulated in the enlarged language. We call this extended theory
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