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§1. Introduction. Computable model theory, also called effective or recur-
sive model theory, studies algorithmic properties of mathematical structures,
their relations, and isomorphisms. These properties can be described syntac-
tically or semantically. One of the major tasks of computable model theory
is to obtain, whenever possible, computability-theoretic versions of various
classical model-theoretic notions and results. For example, in the 1950’s,
Fröhlich and Shepherdson realized that the concept of a computable func-
tion can make van der Waerden’s intuitive notion of an explicit field precise.
This led to the notion of a computable structure. In 1960, Rabin proved
that every computable field has a computable algebraic closure. However,
not every classical result “effectivizes”. Unlike Vaught’s theorem that no
complete theory has exactly two nonisomorphic countable models, Millar’s
andKudaibergenov’s result establishes that there is a complete decidable the-
ory that has exactly two nonisomorphic countable models with computable
elementary diagrams. In the 1970’s, Metakides and Nerode [58], [59] and
Remmel [71], [72], [73] used more advanced methods of computability the-
ory to investigate algorithmic properties of fields, vector spaces, and other
mathematical structures. At the same time and independently, computable
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