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A NOTE ON QUOTIENT SPACES OF
SUPERCOMPACT SPACES

By

Zhonggiang YANG

Abstract A space is called supercompact if it has an open subbase
such that every cover consisting of elements of the subbase has a
subcover consisting of two elements. In this paper we prove that
the quotient space of a supercompact space obtained by identifying
a finite set or a closed G;-set to a point is also supercompact thus
answering a question of M. G. Bell.
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1. Introduction.

All spaces in this paper are assumed to be Hausdorff. Supercompact spaces,
introduced by de Groot [4], are spaces X which possess an open subbase &
such that every cover of X consisting of members of ¢ has a subcover of at
most 2 members. For our purposes it is more elegant to work with closed
‘subbase. A collection of sets ¢ is linked if every 2 members of ¢ has a non-
empty intersection. A collection of sets ¢ is binary if every linked subcollec-
tion of ¢ has a non-empty intersection. So, X is supercompact if and only if
it has a binary closed subbase.

Many compact spaces, but not all, are supercompact. For example, all
compact metric spaces are supercompact [3, 6]; all continuous images of com-
pact ordered spaces are supercompact [2]. On the other hand, the author
recently proved that every cluster point of a countable subset of a supercompact
space is the limit of a nontrivial sequence [7]; therefore there exist many
non-supercompact compact spaces. In 1990, Bell [1] gave a negative answer
for the question of whether all dyadic spaces (=continuous images of 2¢) are
supercompact. In fact, Bell proved that there exists a supercompact subset
Ac2®: such that the quotient space obtained by identifying A to a point is not
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