A relation between the fibers of Milnor fiberings associated to polynomials $\boldsymbol{f}(\boldsymbol{z})=\boldsymbol{z}_{0}^{a_{0}}+\cdots+\boldsymbol{z}_{n}^{\boldsymbol{a}_{n}}$

By Yoshifumi Ando

§ 0. Introduction

All manifolds will be oriented and differentiable of class C^{∞}. Let $a=$ $\left(a_{0}, a_{1}, a_{2}, \cdots, a_{n}\right)$ be a set of integers, $a_{i}>1$ and consider a polynomial $f\left(z_{0}\right.$, $\left.z_{1}, \cdots, z_{n}\right)=z_{0}^{a_{0}}+z_{1}^{a_{1}}+\cdots+z_{n}^{a_{n}}, z_{i} \in \boldsymbol{C}(i=0,1,2, \cdots, n)$. If K_{a} is the intersection of $f^{-1}(0)$ and the unit sphere $S^{2 n+1}$ in C^{n+1}, then we have an associated Milnor fibering $\phi: S^{2 n+1}-K_{a} \rightarrow S^{1}$. It is well known that a fiber F_{a} of ϕ is a $(n-1)$-connected 2 n -manifold and the closure \bar{F}_{a} of F_{a} in $S^{2 n+1}$, a manifold with boundary K_{a} (see [5]). The purpose of this paper is to give a relation between F_{a} and F_{b}, where b is another set of integers, $b=\left(b_{0}, b_{1}, \cdots, b_{n}\right)$, $a_{i} \leqq b_{i}(i=0,1,2, \cdots, n)$.

By Pham's results [6] we can give a canonical basis $x_{1}, x_{2}, \cdots, x_{\mu_{d}}$ to $H_{n}\left(\bar{F}_{a} ; \boldsymbol{Z}\right)$ and also a basis $y_{1}, y_{2}, \cdots, y_{p_{b}}$ to $H_{n}\left(\bar{F}_{b}: \boldsymbol{Z}\right)$, where $\mu_{a}=\left(a_{0}-1\right)\left(a_{1}\right.$ $-1) \cdots\left(a_{n}-1\right)$ and $\mu_{l}=\left(b_{0}-1\right)\left(b_{1}-1\right) \cdots\left(b_{n}-1\right)$. (see Theorem 1.6). Then we have

Theorem A. Let $F_{a}, F_{b},\left\{x_{i}\right\}_{i=1,2, \cdots, \mu_{a}}$ and $\left\{y_{j}\right\}_{j=1,2, \cdots, \mu_{b}}$ be as above. If $n \geqq 3$, then there exists a smooth embedding $e: \bar{F}_{a} \rightarrow \bar{F}_{b}$ so that each x_{i} is mapped onto y_{i} by $(e)_{*}$ and that $\bar{F}_{b}-e\left(F_{a}\right)$ is a manifold with boundary $\left(-K_{a}\right) \cup K_{b}\left(i=0,1, \cdots, \mu_{a}\right)$.

This is proved by considering the intersection pairing of $H_{n}\left(\bar{F}_{a}\right), H_{n}\left(\bar{F}_{b}\right)$ and maps $\alpha: \pi_{n}\left(\bar{F}_{a}\right)$ (and $\left.\pi_{n}\left(\bar{F}_{z}\right)\right) \rightarrow \pi_{n-1}\left(S O_{n}\right)$ which are defined in [7].

Let $a=(2,2, \cdots, 2, s)$. If s odd, then we have well known results that K_{a} is a homotopy sphere which is determined in [1]. But if s is even, then K_{a} is not a homotopy sphere. As an application of Theorem A we have the following

Theorem B. i) If n is even, then K_{a} is diffeomorphic to $D^{n} \times S^{n-1} \cup_{f_{a}}$ $S^{n-1} \times D^{n}$, where f_{a} is described as follows. Let $\partial: \pi_{n}\left(S^{n}\right) \rightarrow \pi_{n-1}\left(S O_{n}\right)$ be ${ }^{J_{a}^{a}}$ boundary homomorphism associated to the fibration $S O_{n} \rightarrow S O_{n+1} \rightarrow S^{n}, \iota_{n}=i d_{s^{n}}$ and $\varphi_{a}=\partial\left([s / 2] \iota_{n}\right)$. Then a diffeomorphism $f_{a}: S^{n-1} \times S^{n-1} \rightarrow S^{n-1} \times S^{n-1}$ is given by $f_{a}(x, y)=\left(x, \varphi_{a}(x), y\right)$.
ii) If n is odd, then K_{a} is diffeomorphic to

