A characterization of $\operatorname{PSU}\left(3,3^{2}\right)$ as
 a permutation group of rank 4

By Shiro Iwasaki

1. Introduction

It is known that the simple unitary group $\operatorname{PSU}\left(3,3^{2}\right)$ of order 6048 has a representation as a primitive group of degree 36 with the stabilizer of a point isomorphic to the projective special linear group $\operatorname{PSL}(3,2)$ of order 168. This representation has rank 4 and subdegrees $1,7,7,21=7 \cdot 6 / 2$, and the orbitals of length 7 are paired with each other (for example, see Quirin [6, P. 224]).

The purpose of this note is to prove the following result, which is a supplement of section 2 of [5].

Theorem. Let (G, Ω) be a finite primitive permutation group of rank 4 such that the subdegrees are $1, k, k, k(k-1) / 2$ and the orbitals of length k are paired with each other. Then $k=7$ and (G, Ω) is permutation-isomorphic to the simple unitary group $\operatorname{PSU}\left(3,3^{2}\right)$ acting by right multiplication on the cosets of its subgroup $\operatorname{PSL}(3,2)$.

Remark. By Proposition 3.6 of [5], if the stabilizer of a point acts doubly transitively on an orbit of length k, the assumption that the orbitals of length k are paired with each other is omitted.

The author is grateful to Mr. E. Bannai and Mr. H. Enomoto for their valuable suggestions.

2. Notation and preliminaries

Our proof is quite elementary and only the familiarity with definitions and basic properties of Higman's intersection numbers ([4]) is assumed. Notation follows [4] and [5], but for convenience we rewrite below. The orbitals of length $1, k, k, l=k(k-1) / 2$ are denoted by $\Gamma_{0}, \Gamma_{1}=\Delta, \Gamma_{3}=\Lambda, \Gamma_{2}=\Gamma$, respectively. Here we may take the orbitals so that $\Gamma_{\alpha}(a)^{g}=\Gamma_{\alpha}\left(a^{q}\right)$ for all $g \in G$ and $a \in \Omega$. The intersection numbers relative to an orbital Γ_{a} are defined by

$$
\mu_{i j}^{(\alpha)}=\left|\Gamma_{a}(b) \cap \Gamma_{i}(a)\right| \quad \text { for } \quad b \in \Gamma_{j}(a) .
$$

The following are fundamental relations among the $\mu_{i j}^{(a)}$ and k, l.

