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1. Introduction

It is known that the simple unitary group PSU(3,3^{2}) of order 6048 has
a representation as a primitive group of degree 36 with the stabilizer of a
point isomorphic to the projective special linear group PSL (3, 2) of order
168. This representation has rank 4 and subdegrees 1, 7, 7, 21=7\cdot 6/2, and
the orbitals of length 7 are paired with each other (for example, see Quirin
[6, P. 224] ).

The purpose of this note is to prove the following result, which is a
supplement of section 2 of [5].

THEOREM. Let (G, \Omega) be a finite primitive permutation group of rank
4 such that the subdegrees are 1, k, k, k(k-1)/2 and the orbitals of length
k are paired with each other. Then k=7 and (G, \Omega) is permutation-isomor-
phic to the simple unitary group PSU(3,3^{2}) acting by right multiplication
on the cosets of its subgroup PS^{v}L(3,2) .

REMARK. By Proposition 3. 6 of [5], if the stabilizer of a point acts
doubly transitively on an orbit of length k, the assumption that the orbitals
of length k are paired with each other is omitted.
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2. Notation and preliminaries

Our proof is quite elementary and only the familiarity with definitions
and basic properties of Higman’s intersection numbers ([4]) is assumed.
Notation follows [4] and [5], but for convenience we rewrite below. The
orbitals of length 1, k, k, l=k(k-1)/2 are denoted by \Gamma_{0} , \Gamma_{1}=\Delta, \Gamma_{3}=\Lambda , \Gamma_{2}=\Gamma,
respectively. Here we may take the orbitals so that \Gamma_{\alpha}(a)^{g}=\Gamma_{\alpha}(a^{g}) for all
q\in G and a\in\Omega . The intersection numbers relative to an orbital \Gamma_{a} are de-
fined by

\mu_{if}^{(a)}=|\Gamma_{\alpha}(b)\cap\Gamma_{i}(a)| for b\in\Gamma_{f}(a) .
The following are fundamental relations among the \mu_{if}^{(\alpha)} and k, l .


