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§ 0. Introduction and main result

The purpose of this paper is to give an extension of the result in a
preceding paper [5] to the case where boundary conditions are not neces-
sarily real.

Let us consider the mixed problem for the system P of Maxwell’s equa-
tions :
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with C* boundary oG and B(t, x) is a C* complex 2X6 matrix function
defined on R!XdG which is of rank two everywhere and is constant for
[t|+|x| sufficiently large. It is assumed, as in [5], that the problem (P, B)
is reflexive, i.e., the kernel of B(t, x) contains that of the boundary matrix

A (x)= }3: vi(x)A; at each (¢, x)&R!' X dG, where v="(y,, v, v5) is the inner

unit normal to aG.

When B is real we proved in [5] the following: If the frozen problem
(P, B)o 4 at an arbitrary boundary point (2% 2% €R'X9G (by this we mean
the constant coefficients problem (P, B) with B replaced by the constant
matrix B(#, 2% and G by the half space {x&R?; v (2 .x2>0}) satisfies Kreiss’
condition (or the uniform Lopatinskii condition), then the kernel of B(z® 29



