On the compact convex base of a dual cone

Ву Капеуикі Үамамото

(Received February 20, 1978)

Let X be a locally convex Hausdorff linear topological space over R, where R is the field of real numbers endowed with its usual topology, X^* be its topological dual and K be a closed proper cone with vertex θ , i. e., a closed subset of X with the following properties: i) $K+K\subset K$, ii) $\lambda K\subset K$ for all $\lambda\geq 0$, and iii) $K\cap (-K)=\{\theta\}$, where θ denotes the zero element of the linear space X. Then K allows us to introduce, by virtue of " $x\leq y$ if $y-x\in K$ ", a partial order \leq , under which X is an ordered linear space with possitive cone K. Let Δ be a non-empty subset of the dual cone $K^*=\{x^*: x^*\in X^*. x^*(x)\geq 0 \text{ for all } x\in K.\}$ satisfying the following conditions:

- (1) if $x^*(x) \ge 0$ for all $x^* \in \mathcal{A}$, then $x \in K$;
- (2) Δ is strongly compact and convex;
- (3) $\theta^* \subseteq \Delta$.

Here θ^* is reserved for the zero element of X^* .

The use of Δ as a set of price systems is justified, when it is intended to treat the infinite-dimensional commodity space (see [2]). Although, in the finite-dimensional case, an example of Δ is easily found, it is not always easy and even impossible to find such an example in the infinite-dimensional case. The purpose of this paper is to discuss the existence of Δ in the infinite-dimensional case. In the infinite-dimensional Banach space, there exists no non-empty subset Δ of K^* with $X^* = K^* - K^*$ satisfying (1), (2) and (3). In fact, the following theorem holds:

THEOREM. Let X be a Banach space, K be a closed proper cone in X and K* be its dual cone. Assume $X^* = K^* - K^*$. If there exists a non-empty subset Δ of K* which satisfies the above conditions (1), (2) and (3), then X is finite-dimensional.

PROOF. Let $(\bigcup_{\lambda \geq 0} \lambda \Delta)^{w-}$ denote the weak*-closure of $\bigcup_{\lambda \geq 0} \lambda \Delta$. Then obviously $K^* \supset (\bigcup_{\lambda \geq 0} \lambda \Delta)^{w-}$.

Suppose that $x_0^* \in (\bigcup_{\lambda \ge 0} \lambda \Delta)^{w-}$ for some $x_0^* \in K^*$. Then, by making use of the separation theorem, there exists an $x_0 \in X$ such that

$$\inf_{\substack{x^* \in \bigcup \lambda^2 \\ \lambda \ge 0}} x^*(x_0) \ge 0 > x_0^*(x_0).$$