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On a transfer theorem for Schur multipliers
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1. Introduction.

In this paper we shall give an alternative proof of the following theorem
proved by D. F. Holt [3].

THEOREM* (Holt).

Let P be a Sylow p-subgroup of a finite group G, and suppose that
P has nilpotency class at most p/2 . Then the Sylow p-subgroups of the
Schur multipliers of G and N_{G}(P) are isomorphic.

We shall prove this theorem by using the method of cohomological G-
functors

Maps and functors will be written on the right in their arguments,
with the corresponding convention for writing composites.

Let G be a finite group and k a commutative ring with identity element.

DEFINITION 1.
A G-functor over k is defined to be a quadruple

A=(a, \tau, \rho, \sigma) ,

where a, \tau , \rho , \sigma are families of the following kind:
a=(a(H)) gives, for each subgroup H of G (notation H\leq G), a finitely

generated k-module a(H) .
\tau=(\tau_{H}^{K}) and \rho=(\rho_{H}^{K}) give, for each pair (H, K) of subgroups of G such

that H\leq K, the respective &-homomorphisms

\tau_{H}^{K} : a(H)arrow a(K) and \rho_{H}^{K} : a(K)arrow a(H) .

\sigma=(\sigma_{H}^{g}) gives, for each pair (H, g) where H is a subgroup of G and g
an element in G, the &-homomorphism

\sigma_{H}^{g} : a(H)arrow a(H^{g})

These families of k-modules and k-homomorphisms must satisfy the following
Axioms for G functors. (In these axioms, D, H, K, L are any sub-

group of G;g, g’ are any elements in G.)


