On p-nilpotent groups with extremal p-blocks

By Yasushi Ninomiya
(Received May 29, 1981 ; Revised Sep. 3, 1981)

Throughout the present paper, G will represent a finite group, and p a fixed prime number. It is well known that
(I) if G is p-closed, then every p-block of G has full defect, and
(II) if G has the p TI-property, then every p-block of G has either full defect or defect zero.

Here, " G is p-closed" means that a Sylow p-subgroup of G is normal, and " G has the $p T I$-property" means that the intersection of two distinct Sylow p-subgroups of G is the identity. It is interesting to consider each converse of (I) and (II). In general, neither the converse of (I) nor of (II) is true. In fact, if H is a p-solvable group of p-length greater than 1 , then $G=H / O_{p^{\prime}}(H)$ has only one p-block, but G is neither p-closed nor has the $p T I$-property. In case $p=2$, several authors studied this problem ([1], [4], [5]). In this paper, we shall show that each converse of (I) and (II) is true if G is a p-nilpotent group. We shall use the following notations: $Z(G)$ is the center of G. Given $g \in G$, we put $x^{g}=g x g^{-1}$ for any $x \in G$, and $S^{g}=\left\{s^{g} \mid s \in S\right\}$ for any subset S of G.

For convenience' sake, we introduce the following definition.
Definition. A group G is a $p F D$-group if every p-block of G has full defect. A group G is a $p F Z D$-group if every p-block of G has either full defect or defect zero.

The following proposition is an immediate consequence of [7, Theorem 4], and plays an important role in our subsequent study.

Proposition 1. Let G be a p-nilpotent group with a normal p-complement N. Then G is a pFD-group if and only if, for every $x \in N$, $C_{G}(x)$ contains a Sylow p-subgroup of G.

By making use of Proposition 1, we can easily obtain the following, which contains [1, Theorem 1].

Theorem 1. Let G be a p-nilpotent group. Then G is p-closed if and only if it is a pFD-group.

Proof. It suffices to prove the if part. We put $N=O_{p^{\prime}}(G)$. If $x \in N$,

