On the Existence of bounded Analytic Functions in a lacunary End of a Riemann surface. Zenjiro KURAMOCHI (Received March 17, 1986) If a domain G in a Riemann surface R has a compact relative boundary ∂G , we call G an end. Let G be an end of a Riemann surface $\in O_g$. Suppose G has a boundary component \mathfrak{p} . The maximal number of linearly independent G. P. If the connected G is called the G-dim of G is called the G-dim of $$\overline{\lim}_{n} \min_{z \in \Gamma_{n}} G'(z, z_{0}) > 0,$$ we say F is completely irregular at \mathfrak{p} . Further if every Γ_n consists of an analytic curve, we say F is completely thin at \mathfrak{p} . Evidently if G is a punctured disk: $\{0 < |z| < 1\}$, F is completely thin at z = 0 if and only if F is irregular at z = 0. We proved THEOREM¹⁾ 1. Let G be an end of a Riemann surface $\in O_g$ with a boundary component \mathfrak{p} of H-dim= ∞ . If F is completely thin at \mathfrak{p} , $$G-F\in O_{AB}$$. For Riemann surfaces $\not\equiv O_g$ analogous theorems²⁾ are discussed before. For examples. There exists a Riemann surface $R \notin O_q$ with the following properties: - 1) R has no singular boundary points with respect to Martin's topology. - 2) There exists a boundary point p which is a singular point of second kind with respect to N-Martin's topology such that $$G \stackrel{N}{\ni} p$$ implies $G \in O_{AB}$, where $G \stackrel{N}{\Rightarrow} p$ means G is a fine neighbourhood of p with respect to the