Characterization of Poisson Integrals of Vector-Valued Functions and Measures on the Unit Circle

Werner J. Ricker*
(Received April 8, 1985, Revised June 30, 1986)

Introduction.

An answer to the question whether, for a given complex-valued harmonic function f in the open unit disk D, there exists a finite measure on $[-\pi, \pi]$ (i. e. on the unit circle Π) such that f is the Poisson integral of this measure can be given in terms of the family of functions $\left\{f_{r} ; 0 \leq r<1\right\}$ defined on the unit circle by

$$
\begin{equation*}
f_{r}: e^{i \theta} \mapsto f\left(r e^{i \theta}\right), \theta \in[-\pi, \pi] . \tag{1}
\end{equation*}
$$

Namely, such a measure exists if and only if there exists a constant α, independent of r, such that

$$
\int_{-\pi}^{\pi}\left|f_{r}\left(e^{i \theta}\right)\right| d \theta \leq \alpha,
$$

for each $0 \leq r<1$. This condition means that the linear maps $\Phi_{r}, 0 \leq r<1$, from the space $C(\Pi)$ of continuous functions on the unit circle (equipped with the uniform norm) into the complex numbers defined by

$$
\begin{equation*}
\Phi_{r}(\psi)=\int_{-\pi}^{\pi} \psi(\theta) f_{r}\left(e^{i \theta}\right) d \theta, \psi \in C(\Pi), \tag{2}
\end{equation*}
$$

map the unit ball of this space into a bounded set independent of r.
Just as well known is the criterion that f is the Poisson integral of an integrable function on Π if and only if the net of functions $\left\{f_{r} ; 0 \leq r<1\right\}$ is Cauchy in the sace $L^{1}(I I)$.

If f is a harmonic function in D, but now with values in a Banach space X, in which case the family of functions $\left\{f_{r} ; 0 \leq r<1\right\}$ also assumes its values in the space X, then it is natural to ask whether the classical results for numerical-valued functions have vector analogues which characterize f as the Poisson integral of an X-valued measure or integrable function on the unit circle. The aim of this note is to show that this is indeed the case.

[^0]
[^0]: * Supported by an Australian-American Fulbright Award while visiting the University of Illinois at Urbana-Champaign. The author wishes to thank the referee for some valuable remarks and suggestions.

