Well posedness for quasi-linear hyperbolic mixed problems with characteristic boundary

Toshio OHKUBO (Received September 12, 1987, Revised November 2, 1988)

§ 1. Introduction and results.

Let G be a domain in $R^n(n \ge 2)$ with smooth and compact boundary ∂G . We consider the mixed problem for symmetrizable hyperbolic system P:

(P, B)
$$\begin{cases} Pu \equiv (D_t + \sum_{j=1}^n A_j D_j + C)u = f & \text{in } [t_1, t_2] \times G, \\ Bu = g & \text{on } [t_1, t_2] \times \partial G, \\ u(t_1, x) = h & \text{for } x \in G, \end{cases}$$

and seek a solution $u \in X_p([t_1, t_2]; G)$ with a nonnegative integer p under the conditions $(I) \sim (V)$ described below, where $D_t = -i \frac{\partial}{\partial t} \equiv D_0$, $D_j = -i \frac{\partial}{\partial x_j}$, $X_p([t_1, t_2]; G) = \bigcap_{i=0}^{p} C^i([t_1, t_2]; H^{p-i}(G)) \equiv X_p(G) \equiv X_p$ and $C^i([t_1, t_2]; H^k(G))$ is of class C^i on $[t_1, t_2]$ to $H^k(G)$, k-th order Sobolev space in G.

(I)(i) The A_j and C are $m \times m$ matrices belonging to $X_q([t_1, t_2]; G)$ where $q = \max\left(p, \left[\frac{n}{2}\right] + 2\right)$.

(ii) There exist $a_0 \ge 1$ and A_0 with $D_i A_0 \in X_{q-1}([t_1, t_2]; G)$ for $i \ge 0$ such that A_0 and the $A_0 A_j$ are hermitian and $a_0^{-1} \le A_0 \le a_0$.

(II) B(t, x) is a $d^+ \times m C^{\infty}$ -matrix of contant rank d^+ .

(III) The boundary matrix A_{ν} is of constant rank d less than m on ∂G , so that ∂G is characteristic for P. Here for x near $\partial G A_{\nu} = \sum_{j=1}^{n} A_{j}\nu_{j}$ and $\nu(x) = (\nu_{1}, \dots, \nu_{n})$ stands for the unit inward normal to ∂G at the boundary point nearest to $x \in \overline{G}$.

(IV) The kernel B is maximally nonpositive for A_0A_{ν} on ∂G , i.e.,

$$(1.1) \qquad A_0 A_{\nu} u \cdot u \leq 0 \qquad \text{for } u \in \ker B \text{ on } \partial G$$

and ker B is a maximal subspace obeying this property. Note that this implies the number of positive eigenvalues of A_{ν} is d^+ on ∂G .

Now, since A_{ν} is of rank d on ∂G and A_0A_{ν} are hermitian, there exist

This work is partially supported by Science Laboratory, Soka University.