Well posedness for quasi-linear hyperbolic mixed problems with characteristic boundary

Toshio Ohkubo
(Received September 12, 1987, Revised November 2, 1988)

§ 1. Introduction and results.

Let G be a domain in $R^{n}(n \geq 2)$ with smooth and compact boundary ∂G. We consider the mixed problem for symmetrizable hyperbolic system P :
(P, B) $\begin{cases}P u \equiv\left(D_{t}+\sum_{j=1}^{n} A_{j} D_{j}+C\right) u=f & \text { in }\left[t_{1}, t_{2}\right] \times G, \\ B u=g & \text { on }\left[t_{1}, t_{2}\right] \times \partial G, \\ u\left(t_{1}, x\right)=h & \text { for } x \in G,\end{cases}$
and seek a solution $u \in X_{p}\left(\left[t_{1}, t_{2}\right] ; G\right)$ with a nonnegative integer p under the conditions (I$) \sim(\mathrm{V})$ described below, where $D_{t}=-i \frac{\partial}{\partial t} \equiv D_{0}, D_{j}=-i \frac{\partial}{\partial x_{j}}$, $X_{p}\left(\left[t_{1}, t_{2}\right] ; G\right)=\bigcap_{i=0}^{p} C^{i}\left(\left[t_{1}, t_{2}\right] ; H^{p-i}(G)\right) \equiv X_{p}(G) \equiv X_{p}$ and $C^{i}\left(\left[t_{1}, t_{2}\right] ; H^{k}(G)\right)$ is of class C^{i} on $\left[t_{1}, t_{2}\right]$ to $H^{k}(G), k$-th order Sobolev space in G.
(I)(i) The A_{j} and C are $m \times m$ matrices belonging to $X_{q}\left(\left[t_{1}, t_{2}\right]\right.$; $G)$ where $q=\max \left(p,\left[\frac{n}{2}\right]+2\right)$.
(ii) There exist $a_{0} \geq 1$ and A_{0} with $D_{i} A_{0} \in X_{q-1}\left(\left[t_{1}, t_{2}\right] ; G\right)$ for $i \geq 0$ such that A_{0} and the $A_{0} A_{j}$ are hermitian and $a_{0}^{-1} \leq A_{0} \leq a_{0}$.
(II) $B(t, x)$ is a $d^{+} \times m C^{\infty}$-matrix of contant rank d^{+}.
(III) The boundary matrix A_{ν} is of constant rank d less than m on ∂G, so that ∂G is characteristic for P. Here for x near $\partial G A_{\nu}=\sum_{j=1}^{n} A_{j} \nu_{j}$ and $\nu(x)=\left(\nu_{1}, \cdots, \nu_{n}\right)$ stands for the unit inward normal to ∂G at the boundary point nearest to $x \in \bar{G}$.
(IV) The kernel B is maximally nonpositive for $A_{0} \mathrm{~A}_{\nu}$ on ∂G, i. e.,

$$
\begin{equation*}
A_{0} A_{\nu} u \cdot u \leq 0 \quad \text { for } u \in \operatorname{ker} B \text { on } \partial G \tag{1.1}
\end{equation*}
$$

and ker B is a maximal subspace obeying this property. Note that this implies the number of positive eigenvalues of A_{ν} is d^{+}on ∂G.

Now, since A_{ν} is of rank d on ∂G and $A_{0} A_{\nu}$ are hermitian, there exist

