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Introduction.

In the history of Riemannian geometry, the rigidity problem of
isometric imbeddings has been one of the major problems and has been
studied by many authors.

Let f be an isometric imbedding of a Riemannian manifold M into a
euclidean space R^{m} . f is called rigid if any other isometric imbedding of
M into R^{m} can be written by a composite of f and a euclidean transfor-
mation of R^{m}\wedge The rigidity problem is to determine whether a given
isometric imbedding f is rigid or not. In his paper [Tn], N. Tanaka
threw a new light upon the rigidity problem and made a great contribution
to the progress of this problem.

Let f be an isometric imbedding of M into R^{m} . We define a
differential operator \Phi_{*f} by setting

\Phi_{*f}(u)=<df . du > ,

where u is a differentiate map of M to R^{m} A solution u of the equation
\Phi_{*f}(u)=0 is called an infifinitesimal isometric deformation of f. N. Tanaka
ka proved that under the assumption that f is non-degenerate, there is a
differential operator L associated with f_{r} which is, in a sense, equivalent
to the operator \Phi* ; and the solution space of the equation L\varphi=0 is
isomorphic with the space of infinitesimal isometric deformations of f.

It is noted that the operator L has a preferable property as a
differential operator: the symbol of L is not necessarily degenerate,
although the symbol of \Phi* ; is necessarily degenerate. Therefore, through
the operator L, the rigidity problem can be observed from a viewpoint of
the differential equation.

In [Tn], N. Tanaka studied the case where the operator L is of ellip-
tic type and f is infinitesimally rigid; an isometric imbedding f is called
infifinitesimally rigid if each solution of L\varphi=0 corresponds to an
infinitesimal euclidean transformation of R^{m} . Applying the theory of ellip-
tic differential equation, he established a global rigidity theorem for such


