Classification of exotic circles of $PL_+(S^1)$

Hiroyuki Minakawa

(Received August 30, 1996; Revised February 28, 1997)

Abstract. Let G be a subgroup of the group $\text{Homeo}_+(S^1)$ of orientation preserving homeomorphisms of the circle. An exotic circle of G is a subgroup of G which is topologically conjugate to SO(2) but not conjugate to SO(2) in G. The existence of an exotic circle shows us the fact that the subgroup G is far from being a Lie group. We previously proved that the group $PL_+(S^1)$ of orientation preserving piecewise linear homeomorphisms of the circle has exotic circles. We give a more explicit construction of exotic circles of $PL_+(S^1)$ and classify all exotic circles up to PL conjugacy.

Key words: topological circle, exotic circle, $PL_+(S^1)$, topologically conjugate, PL conjugate, total derivative, half total derivative.

Introduction

Let G be a Lie group and M an oriented manifold of class C^k $(1 \le k \le \infty)$. Let $\text{Diff}^k_+(M)$ denote the group of all C^k diffeomorphisms of M. A topological action is a continuous map $\varphi : G \times M \to M$ such that

- 1) $\varphi_e(x) = x$,
- 2) $\varphi_{gh}(x) = \varphi_g(\varphi_h(x)).$

where e is the unit of G and $\varphi_g(x) = \varphi(g, x)$. D. Montgomery and L. Zippin proved the following theorem ([4]).

Theorem 0.1 Let φ be a topological action. If every φ_g belongs to $\operatorname{Diff}_+^k(M)$ then φ is a map of class C^k .

In the case where $G = M = S^1$, this theorem implies the following corollary.

Corollary 0.2 If every $h \circ R_x \circ h^{-1}$ is contained in $\text{Diff}_+^k(S^1)$, then h belongs to $\text{Diff}_+^k(S^1)$. Here, $R_x : S^1 \to S^1$ is the rotation of S^1 by x, i.e., $R_x(y) = x + y$.

Indeed, for $\varphi(x, y) = h \circ R_x \circ h^{-1}(y)$. $\varphi: S^1 \times S^1 \to S^1$ is a topological action with $\varphi_x \in \text{Diff}^k_+(S^1)$. Then φ is of class C^k by Theorem 0.1. Fix

¹⁹⁹¹ Mathematics Subject Classification : 58E40 Group actions, 58F03 One dimensional dynamics.