The diameter of the solvable graph of a finite group

Mina Hagie
(Received September 27, 1999)

Abstract

Let G be a finite group. We define the solvable graph $\Gamma_{S}(G)$ as follows: the vertices are the primes dividing the order of G and two vertices p, q are joined by an edge if there is a solvable subgroup of G of order divisible by $p q$. We will prove that the diameter of $\Gamma_{S}(G)$ is less than or equal to 4 for any finite group G. We use the classification of finite simple groups.

Key words: finite simple groups, prime graphs, solvable graphs.

1. Introduction

Let G be a finite group and $\pi(G)$ the set of primes dividing the order of G. We denote by $\pi(n)$ the set of primes dividing a natural number n.

We define the prime graph $\Gamma(G)$ as follows: the vertices are elements of $\pi(G)$, and two distinct vertices p, q are joined by an edge, we write $p \sim q$, if there is an element of order $p q$ in G. Note that $p \sim q$ if and only if there is a cyclic subgroup of G of order $p q$.

We define the solvable graph $\Gamma_{S}(G)$ as follows: the vertices are the elements of $\pi(G)$, and two distinct vertices p, q are joined by an edge, we write $p \approx q$, if there is a solvable subgroup of G of order divisible by $p q$. The concept of solvable graphs was defined recently in Abe-Iiyori [1].

It has been studied about the connected components of $\Gamma(G)$ in Williams [8], Iiyori and Yamaki [5], Kondrat'ev [6]. Abe and Iiyori [1] proved that $\Gamma_{S}(G)$ is connected. The diameter of $\Gamma(G)$ has been determined by Lucido [7]. We denote the connected components of $\Gamma(G)$ by $\pi_{1}, \ldots, \pi_{n(\Gamma(G))}$, where $n(\Gamma(G))$ is the number of connected components of $\Gamma(G)$. If the order of G is even, we take π_{1} to be the component containing 2. Let $d(p, q)$ (resp. $d_{S}(p, q)$) be the distance between two vertices p, q in $\Gamma(G)$ (resp. $\Gamma_{S}(G)$). We can define the diameter of $\Gamma_{S}(G)$ as follows:

$$
\operatorname{diam}\left(\Gamma_{S}(G)\right)=\max \left\{d_{S}(p, q) \mid p, q \in \pi(G)\right\}
$$

The purpose of this paper is to prove:

[^0]
[^0]: 1991 Mathematics Subject Classification : 20D05.

