# Strongly orthogonal subsets in root systems 

Yoshio Agaoka and Eiji Kaneda

(Received June 9, 2000; Revised November 6, 2000)


#### Abstract

We classify maximal strongly orthogonal subsets (= MSOS's) in irreducible root systems under the action of Weyl groups, including non-reduced cases. We show that among irreducible root systems, $B_{n}(n=e v e n), C_{n}(n \geq 2), F_{4}$ and $B C_{n}(n \geq 1)$ admit several inequivalent MSOS's. As an application of this result, we give a classification of MSOS's associated with Riemannian symmetric pairs.


Key words: root system, strongly orthogonal subset, Riemannian symmetric space.

## Introduction

In our paper [1], in order to solve a geometric problem concerning the existence of local isometric imbeddings of compact irreducible Riemannian symmetric spaces $G / K$, we constructed subsets $\Gamma$ of root systems $\Delta$ having the following properties:
(C.1) $\theta \alpha=-\alpha$ for all $\alpha \in \Gamma$, where $\theta$ means the involution of $\Delta$ induced from the symmetry of $G / K$.
(C.2) If $\alpha, \beta \in \Gamma, \alpha \neq \beta$, then $\alpha \pm \beta \notin \Delta \cup\{0\}$.
(C.3) It holds $\# \Gamma=s(G / K)$, where $s(G / K)=\operatorname{rank}(G / K)-\operatorname{rank}(G)+$ $\operatorname{rank}(K)$.

Using these subsets $\Gamma$ satisfying the above conditions, we determined the maximum of the rank of the curvature transformation of $G / K$, and gave some estimates on the dimension of the Euclidean space into which $G / K$ can be locally isometrically immersed.

In [2] we introduced a new geometric quantity $p(G / K)$ naturally associated with $G / K$, by which we improved the estimates given in [1]. For example, by calculating the value $p(G / K)$ for $G / K=S p(n)$, we proved that the canonical imbedding of the symplectic group $S p(n)$ into $\boldsymbol{R}^{4 n^{2}}$ gives the least dimensional isometric imbedding even in the local standpoint (see [3]). It is desirable to determine the value $p(G / K)$ for all Riemannian symmetric spaces, though it is a considerably difficult algebraic problem.

